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In recent years, a variety of chaos-based image cryptosystems have been studied. Most of
them adopt the traditional confusion–diffusion architecture, which is considered insecure
upon chosen/known plain-image attacks. In this paper, a nonlinear traverse on the plain-
image using dependent diffusion and reverse cat map is proposed to replace the traditional
linear traverse performed in the confusion phase. Two cryptosystems are designed and are
implemented by software means. Simulation results and numerical analysis justify their
high efficiency and sufficient strength.
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1. Introduction

Due to the characteristics of easy-understanding and attractive presentation, multimedia contents such as video, image
and audio, have been widely transmitted in the ever-growing Internet and mobile communications. The privacy of certain
multimedia files such as personal videos and images needs to be protected when these files are sent via a public network.
However, traditional cryptosystems such as DES and AES are found unfit for multimedia data [1].

The fundamental characteristics of chaotic systems, such as ergodicity, sensitivity to initial condition and control param-
eters, have attracted researcher’s attention since such features can be considered analogous to the desired cryptographic
properties. Chaos-based encryption algorithms [1–8,10–22,25] have been extensively studied due to their superior proper-
ties in security and complexity. In 1998, Fridrich firstly proposed a chaos-based image cryptosystem composing of permu-
tation and diffusion [20]. Under this structure, the permutation of plain-image pixels is governed by a 2-D chaotic map, such
as standard map, baker map and cat map. In the diffusion phase, a 1-D chaotic map is usually employed, as Fig. 1 shows. The
Fridrich architecture has become the most popular structure adopted in many chaos-based image encryption algorithms
subsequently proposed.

There are a variety of approaches for confusion and diffusion. In [2], Lian et al. proposed an encryption algorithm, in which
a modified standard map is employed in the confusion step while a logistic map is adopted for diffusion. The fixed-point
problem of the standard map is solved by shifting the origin to a randomly-selected point. In [3], a block cipher based on
dynamic S-boxes was studied. A tent map is chosen to generate the S-box required in the permutation phase, and a left-cyc-
lic-shift operation is used for diffusion. In [7], Wong et al. improved Lian et al.’s algorithm by introducing an ‘‘add-and-shift’’
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Fig. 1. The Fridrich image encryption architecture.
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operation in the confusion stage. Since the execution time of a round of diffusion is much longer than that required by con-
fusion, the operation efficiency is improved by introducing certain diffusion effect in the confusion phase. Patidar et al. [13]
proposed a color image encryption scheme using two rounds of confusion and two rounds of diffusion. In the diffusion phase,
the vertical and horizontal diffusions are performed using standard map and logistic map, respectively. In [28], a novel cryp-
tosystem based on the Fridrich structure is proposed, in which the pixel level permutation is replaced by a bit level permu-
tation. As a result, a permutation at bit level not only changes the position of a pixel but also alters its value.

In [4], Wang et al. pointed out that under the confusion–diffusion architecture with fixed parameters, the two processes
will become independent if the plain-image is a homogeneous one with identical pixels. In this case, the confusion effect is
removed and the security of the whole cryptosystem only relies on diffusion. Therefore, it can be concluded that the Fridrich
confusion–diffusion structure can be attacked by the following steps: (1) a homogeneous image with identical pixels is cho-
sen to eliminate the effect of confusion; (2) the key-stream of the diffusion phase is obtained via known- or chosen-plaintext
attacks; (3) the remaining cipher-image can be considered as the output of a kind of permutation-only cipher, which has
been proven insecure and can be easily cryptanalyzed by known- or chosen-plaintext attacks [9,23,24,26].

In this paper, two cryptosystems are designed to avoid the flaw of the Fridrich architecture. The first one makes use of
dependent diffusion and the reverse cat map. It can be considered as an improved version of the Fridrich framework since
there is no clear separation between the confusion and the diffusion phases. Therefore, the drawback of the conventional
architecture is overcome. In the Fridrich architecture, all the pixels are permuted before the pixel values are diffused. This
means that the basic unit of the confusion and diffusion operations is the whole image. However, in our scheme, the basic
unit is a pixel. Once the new location of a pixel is calculated, we diffuse the pixel immediately rather than calculate the next
pixel’s location. The value of the ciphered pixel influences the next pixel’s confusion and diffusion operations. The confusion
effect governs the diffusion process at the pixel level. As a result, only one traverse of all the pixels is needed instead of two
traverse rounds composed of one confusion and one diffusion as required in the traditional structure. Thus, the proposed
scheme is more efficient.

In the second proposed cryptosystem, a modified mapping based on a 2-D chaotic map is adopted in the confusion phase
and a simple diffusion is performed in the same phase. In the conventional confusion process, a mapping from an ordinary
position to a pseudorandom position is defined. Take the cat map as an example, the input sequence to the map is the regular
pixel position (usually from the upper-left corner to the lower-right corner) while the output sequence is considered as pseu-
dorandom. Here we propose a new kind of mapping which maps a pseudorandom position in the plain-image to another
pseudorandom position in the cipher-image. With the help of the new mapping operation and simple diffusion in the con-
fusion phase, the confusion and diffusion effects cannot be separated using a plain-image with identical pixels. Thus the
cryptanalysis for permutation-only ciphers become ineffective.

The paper is organized as follows. In Section 2, dependent diffusion and the reverse cat map are introduced using a simple
example. The proposed cryptosystems are described in Section 3. Simulation results and performance analysis are reported
in Section 4. A conclusion is drawn in the last section.
2. Dependent diffusion and the reverse use of 2-dimensional chaotic maps

2.1. Dependent diffusion

In traditional confusion–diffusion type image cryptosystems, these two processes are operated independently. Firstly, the
new position of each pixel is calculated. Then the pixel values are modified in the diffusion phase. Under this structure, two
rounds of traverse over all the pixels are needed.

To reduce the execution time, we investigate if both confusion and diffusion can be performed by only one traverse of the
pixels. In the proposed scheme, dependent diffusion and pixel relocation using the reverse cat map (which is described in
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Section 2.2) are employed. When the location of a pixel is calculated, its value is also obtained by a single dependent
diffusion.

Eqs. (1) and (2) illustrate the processes of dependent diffusion. A cat map and a logistic map are employed, and only one
traverse round of all the pixels is required. For each pixel, Eq. (1) is firstly used to calculate its new position. Then Eq. (2) is
employed to diffuse that pixel. However, in the Fridrich architecture, the positions of all the pixels are calculated before the
diffusion operation starts.
x0
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1 p

q pqþ 1
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� �
modN; ð1Þ
cipheredðx0; y0Þ ¼ arrðx; yÞ � f½a� ðt=1000Þ � ½1� ðt=1000Þ� � 1000�mod256g: ð2Þ
In Eq. (1), ðx; yÞ is the original position of the plain-image pixel while ðx0; y0Þ is the pseudorandom position governed by the
cat map, p and q are the cat map parameters, N denotes the width or height of the square image. In Eq. (2), arrðx; yÞ and
cipheredðx0; y0Þ are the pixel values of the plain-image and the cipher-image, respectively. Moreover, t is the value of the pre-
viously-processed pixel, and a is the parameter of the logistic map.

If the diffusion process is not conducted in a sequential manner or the value of the pixel being processed is not influenced
by the previous one, the cryptosystem will become insensitive to a slight modification of the plain-image. In dependent dif-
fusion using an ordinary cat map, the pixel being processed is not adjacent to the previously-processed pixel in the ciphered
image, as Fig. 2 illustrates. A variable named ‘‘t’’ is used to store the value of the previously-processed pixel.

To clearly illustrate the concept of dependent diffusion using an ordinary cat map, two pixels are first chosen, as shown in
Fig. 2. arrðx; yÞ and arrðx; yþ 1Þ are two adjacent pixels in the plain-image while cipheredðx0; y0Þ and cipheredðx�; ðyþ 1Þ�Þ are
the two corresponding non-adjacent encrypted pixels in the cipher-image. Firstly, the new position ðx0; y0Þ of arrðx; yÞ is cal-
culated. After that, the diffusion process on this pixel is performed, and the new pixel value cipheredðx0; y0Þ is obtained. The
temporary variable t is set to cipheredðx0; y0Þ. In the second step, the new location ðx�; ðyþ 1Þ�Þ of arrðx; yþ 1Þ is calculated.
The diffusion process, which is influenced by the previously-processed pixel t, is performed.

In the dependent diffusion architecture, the parameters and the initial values of confusion (or the effect of confusion) gov-
ern the diffusion order among the pixels. The pixel value of the cipher-image is influenced by both the secret key of the dif-
fusion phase and the previously-processed pixel value. The relationship between the current and the previously-processed
pixels is governed by the temporary variable t to increase the sensitivity to any modifications in the plain-image.

A more general situation of dependent diffusion is shown in Fig. 3. The relationship among the cipher-image pixels is
clear. For example, Fig. 3(b) illustrates that the value of pixel 2 is influenced by that of pixel 1 while the value of pixel 3
is in turn influenced by that of pixel 2, etc.

The second part of the right-hand-side of Eq. (2) is extracted as Eq. (3).
UðsÞ ¼ ½a� ðs=1000Þ � ½1� ðs=1000Þ� � 1000�mod256: ð3Þ
As the ranges of UðsÞ and s are both [0,255], a look-up table is used to reduce the execution time. We compare the oper-
ating efficiency of the two structures for achieving the same encryption effect that each plain-image pixel is relocated and
diffused once, respectively. A confusion and a diffusion rounds are performed in the Fridrich architecture while one round of
dependent diffusion is performed in the new structure. In the latter case, the initial condition of t is given by
t ¼ f½a� ðkd=1000Þ� � ð1� kd=1000Þ� � 1000gmod256, a is set to 4. ðkd; pd; qdÞ is the encryption key, where pd and qd are
Fig. 2. Dependent diffusion.
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the cat map parameters. In the Fridrich structure, ðpf ; qf Þ are the cat map parameters while the initial value is defined in [20],
which is the key of the diffusion operation. More information can be found in [20]. Table 1 shows the execution times of the
two structures using different test images and parameters.

As Table 1 shows, the execution time of dependent diffusion is much shorter than that of the Fridrich structure. Besides
computation efficiency, the confusion effect of the dependent diffusion structure employing the reverse cat map will not be
removed by a homogeneous image. An experiment has been performed and is described in Section 2.3.

2.2. The reverse use of 2-dimensional chaotic map

A two-dimensional chaotic map is usually employed in the confusion phase of most classical image cryptosystems. Take
the cat map given by Eq. (1) as an example, almost all the pixels are relocated by the map in the confusion phase. It defines a
mapping from the original position (usually from upper-left corner to lower-right corner) to a pseudorandom location. When
the confusion phase starts, the pixels at different positions of the plain-image have different processing orders. For example,
arrð0;0Þ, which is the upper-left corner pixel, is always the first one to be processed. On the other hand, arrð511;511Þ, which
locates at the lower-right corner, is the last one in the processing sequence.

The processing order of a pixel in the plain-image is significant. Under the assumption that the output sequence of the cat
map is pseudorandom, we can investigate if it is possible to use the map reversely to visit the plain-image pixels in a non-
linear manner rather than a regular way. If the cat map defines a mapping from the original position to a pseudorandom one,
the reverse cat map should give the mapping from a pseudorandom position to a regular one. Almost all the pixels have the
same probability being relocated to any positions in the processing sequence. This means that the last pixel arrð511;511Þ
will not always be placed at the end of the processing sequence. The reverse cat map along with the dependent diffusion
is formulated in Eqs. (1) and (4).
Table 1
Executi

Test

Lena
Gold
Cam
Pepp
Barb
Lena
Gold
Boat
cipheredðx; yÞ ¼ arrðx0; y0Þ � f½a� ðt=1000Þ � ½1� ðt=1000Þ� � 1000�mod256g: ð4Þ
The difference between Eqs. (2) and (4) are the pixel positions: one is cipheredðx0; y0Þ and arrðx; yÞ but the other is
cipheredðx; yÞ and arrðx0; y0Þ. For example, if arrð511;511Þ is slightly modified, the pixel will be processed in an earlier stage,
not the last. The subsequent pixels will be influenced by this tiny modification in an earlier stage.
on time of dependent diffusion and Fridrich structure.

image Size Dependent diffusion structure Fridrich structure[20]

Parameters ðkd; pd ; qdÞ Execution time (ms) Parameters ðinitial value;pf ; qf Þ Execution time (ms)

.bmp 256� 256 (0.112,100,33) 0.9 (70,100,33) 1.3
hill.bmp 256� 256 (0.228,50,96) 0.9 (120,50,96) 1.4
eraman.bmp 256� 256 (0.009,60,58) 0.8 (25,60,58) 1.3
ers.bmp 256� 256 (0.478,12,24) 0.9 (103,12,24) 1.4
.bmp 512� 512 (0.283,124,212) 4.6 (79,124,212) 6.3
.bmp 512� 512 (0.334,223,144) 4.0 (210,223,144) 6.3
hill.bmp 512� 512 (0.872,199,68) 4.0 (32,199,68) 6.2
.bmp 512� 512 (0.526,78,83) 4.0 (61,72,83) 7.8



Fig. 4. Confusion effect by an ordinary 2-dimensional chaotic map.

Fig. 5. Confusion effect by the reverse use of 2-dimensional chaotic map.
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The difference in the confusion effect between the ordinary 2-dimensional chaotic map and the reverse use of the map is
depicted in Figs. 4 and 5. The pixels 1, 2, 3 and 4 in Figs. 4(a) and 5(a) are plain-image pixels while pixels 10; 20; 30 and 40 in
Figs. 4(b) and 5(b) represent the permuted pixels in the cipher-image. Fig. 4 illustrates that by using an ordinary 2-dimen-
sional chaotic map, the adjacent pixels are visited in a sequential manner, and are mapped to pseudorandom positions. How-
ever, in the reverse use of the 2-dimensional chaotic map, the pixels in the plain-image are visited in a pseudorandom
manner, as governed by the output sequence of the map which is determined by both the parameters and the initial value.
They are then mapped to ordinary positions in the cipher-image. Besides the cat map, which is used as an example, the stan-
dard map, henon map or baker map can also be employed in our dependent diffusion structure.

Based on the above analyses, we can investigate if a new kind of mapping, from a pseudorandom position in the plain-
image to another pseudorandom position in the cipher-image, can be defined by combining the ordinary and the reverse use
of 2-dimensional chaotic maps. This will be studied in detail in Section 3.2.

2.3. Confusion effect of plain-image with identical pixel value

In traditional confusion–diffusion cryptosystems, the confusion effect can be removed by a plain-image with identical
pixels, which leads to the security problem mentioned in Section 1. However, in the proposed dependent diffusion architec-
ture, the separation of confusion and diffusion is not as clear as it is in the Fridrich structure since the two operations are
fully mixed in the encryption process. Furthermore, the confusion coefficients determine the diffusion order. These lead
to the result that a homogeneous image cannot compromise the confusion phase of the cryptosystem.
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If the confusion effect can be eliminated by a homogeneous image, the cipher-images obtained by the original and the
modified confusion coefficients will be the same. Otherwise, the two cipher-images will be different because the modified
coefficients influence the final cipher-image. To clearly illustrate this property, a simple experiment is performed using a
homogeneous plain-image with all pixel values set to 170. Two different cryptosystems, one with the Fridrich structure
whereas the other is composed of dependent diffusion using the reverse cat map, are tested by the following steps:

(1) The homogeneous plain-image is encrypted by the original confusion coefficients and a cipher-image ci1 is obtained.
(2) The same plain-image is encrypted by the modified confusion coefficients and cipher-image ci2 is obtained.
(3) Compare ci1 and ci2 to find their differences, if any.

In our simulations, four confusion and one diffusion rounds are chosen in the Fridrich structure while two rounds of
dependent diffusion are adopted in the structure governed by Eqs. (1) and (4). The ordinary cat map is employed in the Frid-
rich structure but the reverse cat map is used in dependent diffusion structure. The original coefficients are both (235,509)
and the modified coefficients are obtained by adding 1 to each parameter, i.e., (236,510).
Fig. 6. (a) The plain-image with identical pixel value; (b) the cipher-image obtained by dependent diffusion structure with coefficients (235,509); (c) the
cipher-image obtained by the Fridrich structure with original coefficients (235,509); (d) the cipher-image obtained by dependent diffusion structure with
modified coefficients (236,510); (e) the cipher-image obtained by the traditional structure with modified coefficients (236,510); (f) the difference between
(b) and (d); (g) the difference between (c) and (e).
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The simulation results are shown in Fig. 6. Fig. 6(a) is the plain-image with identical pixel value of 170. Fig. 6(b) and (d)
are the cipher-images obtained by the dependent diffusion structure using the original and the modified confusion coeffi-
cients, respectively. Fig. 6(c) and (e) are the cipher-images obtained by the Fridrich structure using the original and the mod-
ified confusion coefficients, respectively. Fig. 6(f) is the difference image between Fig. 6(b) and (d) whereas Fig. 6(g) is the
difference image of Fig. 6(c) and (e). Since the range of the pixel values in the difference image is [�255,255], which exceeds
the range represented by 8 bits, it cannot be shown properly in a bitmap file. To show the difference between the two cipher-
images graphically, a scaling is applied to map the difference image values from the range [�255,255] to [0,255], as Fig. 6(f)
and (g) show.

The difference between two images obtained by dependent diffusion structure is shown in Fig. 6(f). It justifies that the
confusion effect is not removed by a plain-image with identical pixels. The simulation results show that a slight modification
of the confusion coefficients leads to 99.58% different pixels in the two cipher-images. This implies that the confusion effect
influences the final cipher-image significantly even though all the plain-image pixels have the same value. On the other
hand, the pixel values of Fig. 6(g) are all zero, which reveals that there is no difference between Fig. 6(c) and (e) although
the confusion coefficients have been changed. Thus, we can conclude that the dependent diffusion structure can resist this
kind of attack.
3. The proposed schemes

3.1. Algorithm 1

In Algorithm 1, the reverse cat map and dependent diffusion are employed. Its structure is shown in Fig. 7.
The dependent diffusion is governed by the reverse cat map and the logistic map. The ordinary cat map is defined by Eq.

(1) whereas the logistic map is defined by Eq. (5).
f ðxnÞ ¼ axn�1ð1� xn�1Þ: ð5Þ
In Eq. (5), a is the logistic map coefficient. The output sequence is chaotic when a 2 ½3:57;4�. Two sequences SQ1 and SQ2

are generated by iterating Eq. (5) with two secret keys conf key1 ¼ 0:12345678912345 and conf key2 ¼ 0:67856746347633.
a is set to 3.99999.

Denote pi and qi as the coefficients of the reverse cat map in the ith round of dependent diffusion. Moreover, rj
x; rj

y are
randomly-selected pixel positions in the jth encryption round. These four parameters are generated according to Eqs. (6)–
(9), respectively.
pi ¼ ðSQ 1ð2000þ iÞ � 109Þmod512; ð6Þ
qi ¼ ðSQ2ð2000þ iÞ � 109Þmod512; ð7Þ
rj
x ¼ ðSQ1ð2000þ 100þ jÞ � 109Þmod512; ð8Þ
rj
y ¼ ðSQ2ð2000þ 100þ jÞ � 109Þmod512: ð9Þ
The process of dependent diffusion is governed by Eq. (10). As Eq. (3) indicates, a look-up table is used to reduce the exe-
cution time.
x0

y0

� �
¼

1 pi

qi piqi þ 1

� �
x

y

� �
modN;

ciphðx; yÞ ¼ arrðx0; y0Þ � f½a� ðt=1000Þ � ½1� ðt=1000Þ� � 1000�mod256g;
t ¼ ciphðx; yÞ:

8>>><
>>>:

ð10Þ
In Eq. (10), t is a temporary variable storing the value of the previous ciphered pixel. Its initial value is defined by
t ¼ ½4� key d� ð1� key dÞ � 1000�mod256 ,N is the width (or height) of the test image, x 2 ½0;N � 1�; y 2 ½0;N � 1�. key d
is set to 0.33456434300001. arrðx0; y0Þ denotes the plain-image pixel at the random position ðx0; y0Þ. ciphðx; yÞ represents
Select   

(rx, ry)

Exchange arr(rx, ry) and 

arr(0,0)

Dependent

diffusion 

n encryption rounds 

m rounds 

Plain-image Cipher-image 

Fig. 7. Architecture of the proposed Algorithm 1.
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the ciphered pixel locating at position ðx; yÞ; ðpi; qiÞ is the coefficient pair of the reverse cat map in the ith round of dependent
diffusion, i ¼ 1;2; . . . ;m. In Fig. 7, the number of dependent diffusion rounds m is selected as 2.

The operation procedures of the proposed scheme are described as follows:

Step 1: A random pair ðrj
x; r

j
yÞ is generated from Eqs. (8) and (9).

Step 2: The two pixels, arrð0;0Þ and arrðrj
x; r

j
yÞ, are exchanged to solve the fixed point problem of the cat map.

Step 3: Perform m rounds of dependent diffusion.
In the ith round ði ¼ 1;2; . . . ;mÞ,
(1) ðpi; qiÞ is given by Eqs. (6) and (7).
(2) A random position ðx0; y0Þ is generated according to the reverse cat map with parameters ðpi; qiÞ. The value of

arrðx0; y0Þ in the plain-image is modified by a single diffusion operation. The value of each ciphered pixel is influ-
enced by two factors: arrðx0; y0Þ and the value of the previous ciphered pixels.

(3) The encrypted pixel is placed at the regular position ðx; yÞ of the cipher-image.
(4) Go to (2) until all the pixels in the plain-image have been encrypted.
Step 4: Go to Step 3 to perform the ðiþ 1Þth round of dependent diffusion until i ¼ m.

In the proposed scheme, two rounds of dependent diffusion with different coefficients and initial values form an encryp-
tion round. Simulation results show that the NPCR and UACI values can reach 99.6% and 33.4%, respectively, in only two
encryption rounds. The detailed simulations and performance analyses of this scheme are reported in Section 4.

3.2. Algorithm 2

The ordinary cat map defines a mapping from a regular position to a pseudorandom location whereas the reverse cat map
gives a mapping from a pseudorandom position to a regular one. It is worthy to investigate if a new kind of mapping from a
pseudorandom position to another pseudorandom position can be obtained by the combination of ordinary and reverse cat
maps.

In the ordinary confusion phase using a cat map defined by Eq. (1), the input pair ðxi; yiÞ usually indicates the pixel’s posi-
tion in the plain-image. The processing order is usually from the upper-left corner to the lower-right corner. Meanwhile, the
output position ðrxi; ryiÞ of the cat map is considered as pseudorandom. The confusion effect of the cat map is achieved by
mapping each pixel from position ðxi; yiÞ in the plain-image to the corresponding pseudorandom position ðrxi; ryiÞ in the ci-
pher-image.

The situation of reverse cat map is just the opposite. The confusion effect is achieved by mapping each pixel located at
ðrxi; ryiÞ in the plain-image to ðxi; yiÞ in the cipher-image. Owning to the different characteristics of the two mapping opera-
tions, a new kind of confusion mapping a pseudorandom position to another pseudorandom position can be obtained by
combining ordinary and reverse cat maps, as illustrated in Fig. 8.

Fig. 8(a) is the plain-image and Fig. 8(c) is the cipher-image after confusion. Fig. 8(b) is the transition required in the per-
mutation stage. According to Eq. (11), ðp1; q1Þ is the parameter pair of the reverse cat map in the first confusion step (from
Fig. 8(a) to (b)) and ðp2; q2Þ denotes the parameter of the ordinary cat map in the second confusion step (from Fig. 8(b) to (c)).
In this new confusion process, four parameters, rather than two, govern the mapping from a pseudorandom position to an-
other pseudorandom position.
Fig. 8. A new confusion mapping from a pseudorandom position to another pseudorandom position.
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Firstly, a random position ðrxi; ryiÞ is generated using the reverse cat map. The plain-image pixel located at this position
points to ðxi; yiÞ, which is a temporary position of the pixel, as illustrated in Fig. 8(a) and (b). Secondly, the cat map is em-
ployed to map the pixel locating at ðxi; yiÞ to another random position ðr0xi; r

0
yiÞ (Fig. 8(b) and (c)). Take pixel 2 in Fig. 8 as an

example, the start position (Fig. 8(a)) and the final position (Fig. 8(c)) are governed by ðp1; q1Þ and ðp2; q2Þ. Note that Fig. 8(b)
does not really exist during the confusion phase, since it is only a transition state.

The same confusion effect can also be achieved by the combination of two different 2-D chaotic maps. For example, the
combination of reverse standard map and the ordinary cat map, or the combination of reverse cat map and the ordinary ba-
ker map, etc.

In Algorithm 2, the Fridrich structure is employed with the following modifications to avoid the flaws mentioned in the
Introduction: (1) the confusion stage is composed of a combination of reverse and ordinary cat maps; (2) pixel value mod-
ification is performed between two confusion steps. The confusion phase is governed by Eq. (11), in which rand1 is a random
number array with 256 elements, generated by the logistic map with the initial value and coefficient 0.72345678912345 and
3.99999, respectively. If the output number is the same as any of the previous ones when rand1 is being calculated, that
number is rejected and the algorithm proceeds to the next computation round to guarantee that there are no identical num-
bers in rand1. The first 2000 numbers generated by the logistic map are discarded. temp1 is a temporary variable storing the
processed pixel value.
x0
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1 p1

q1 p1q1 þ 1

� �
x

y

� �
modN;

midðx; yÞ ¼ arrðx0; y0Þ � rand1ðtemp1Þ;
x00

y00

� �
¼

1 p2

q2 p2q2 þ 1

� �
x

y

� �
modN;

ciphðx00; y00Þ ¼ midðx; yÞ;
temp1 ¼ ciphðx00; y00Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð11Þ
In Eq. (11), the initial value of temp1 is set to temp1 ¼ f½3:99999� ðconf key5Þ � ð1� conf key5Þ� � 103gmod256. SQ3 and
SQ4 are generated from Eq. (5), with the initial values conf key3 and conf key4, respectively. pi and qi are calculated according
to Eqs. (12) and (13), respectively. conf key3; conf key4 and conf key5 are arbitrarily chosen as 0.12345678912340,
0.88795676859468 and 0.12345432167893, respectively. In Eq. (11), arrðx0; y0Þ is the value of the randomly-selected pixel
located at ðx0; y0Þ in the plain-image by the reverse use of cat map, as Fig. 8(a) shows. midðx; yÞ represents the temporary po-
sition, as shown in Fig. 8(b), and ciphðx00; y00Þ is the value of the encrypted pixel locating at position ðx00; y00Þ after the confusion
phase, as depicted in Fig. 8(c).
pi ¼ ðSQ 3ð2000þ iÞ � 109Þmod512; ð12Þ

qi ¼ ðSQ4ð2000þ iÞ � 109Þmod512: ð13Þ
In the diffusion phase of Algorithm 2, Eq. (14) is employed to diffuse the intermediate image. In that equation, rand2 is
calculated in the same way as for rand1. The initial value and the coefficient of the logistic map are set to 0.33798657654353
and 3.99999, respectively.
ciph dðiÞ ¼ acðiÞ � rand2ðtemp2Þ;
temp2 ¼ ciph dðiÞ:

�
ð14Þ
In Eq. (14), the initial value of temp2 is set to temp2 ¼ f½3:99999� ðkey d1Þ � ð1� key d1Þ� � 103gmod256, where key d1

is selected as 0.54567894324298. acðiÞ represents the value of the ith pixel in the one-dimensional sequence obtained in the
confusion phase, and ciph dðiÞ is the value of the ith pixel after diffusion. temp2 is a temporary variable storing the processed
pixel value.

4. Experimental results

In this section, experimental results and performance analyses for the proposed schemes and a comparable algorithm
called Bit Level Permutation (BLP) [28] are provided. The secret keys for BLP are the same as those used in [28]. All the sim-
ulations are performed on a computer equipped with an Intel Xeon 3.2 GHz CPU, 6 GB memory and 1 TB harddisk space run-
ning Windows 7 Professional. The compilation platform is Visual C++ 6.0 whereas some graphs are plotted using MATLAB
2009(a). In Algorithm 1, the round numbers m and n as shown in Fig.7 are selected as 2 and 1, respectively.

4.1. Histogram analysis

A histogram shows the distribution of pixel values in an image. The ideal histogram of the cipher-image should be uni-
form and is significantly different from that of the plain-image, so as to prevent the attacker from obtaining any useful sta-
tistical information. In our simulation, the test image is Barb at size 512� 512.
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As Fig. 9 illustrates, histograms of the cipher-images obtained by both Algorithms 1 and 2 are fairly uniform and are sig-
nificantly different from that of the plain-image. They imply that the cipher-images cannot provide any useful information
for the attacker to launch any statistical attacks on the cryptosystem.
Fig. 9. (a) The original Barb image; (b) histogram of the plain-image; (c) cipher-image obtained by Algorithm 1; (d) histogram of the cipher-image obtained
by Algorithm 1; (e) cipher-image obtained by Algorithm 2; (f) histogram of the cipher-image obtained by Algorithm 2.
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4.2. Correlation analysis

There are two kinds of statistical analysis: histogram and correlation. In [27], Shannon pointed out that quite a large por-
tion of cryptosystems can be attacked by statistical analysis. In this section, correlation analysis is given and the comparisons
among the two proposed schemes and the comparable cryptosystem are made. The correlation between adjacent pixels in
the plain-image is always high for an intelligible image since their pixel values are close to each other. The following steps
are performed to evaluate an image’s correlation property: (1) 2000 pixels are randomly selected as samples, (2) the corre-
lations between two adjacent pixels in horizontal, vertical and diagonal directions are calculated by Eqs. (15)–(17).
Table 2
Correla

Hori
Vert
Diag

Table 3
Correla

Hori
Vert
Diag
rx;y ¼
E ½x� EðxÞ�½y� EðyÞ�f gffiffiffiffiffiffiffiffiffiffi

DðxÞ
p ffiffiffiffiffiffiffiffiffiffi

DðyÞ
p ; ð15Þ

EðxÞ ¼ 1
S

XS

i¼1

xi; ð16Þ

DðxÞ ¼ 1
S

XS

i¼1

xi � EðxÞ½ �2; ð17Þ
where x and y are the gray-levels of two adjacent pixels. EðxÞ and DðxÞ are the expectation and the variance of x, respectively.
S denotes the total number of samples. The correlation coefficients of the cipher images obtained by the proposed schemes
and BLP [28] using three test images are listed in Tables 2–4. The average coefficients for these images are calculated using
Eq. (18), and the corresponding values can be found in Table 5.
average coefficient ¼ jaj þ jbj þ jcj
3

; ð18Þ
where a; b and c are the 3 correlation coefficients along the same direction for 3 test images, Baboon, Elain and Barb, all hav-
ing size 512� 512.

In Table 5, only the horizontal correlation of Algorithm 1 is larger than that of BLP while other correlation coefficients of
both Algorithms 1 and 2 are all smaller than the comparable scheme. Since the values of adjacent pixels in a meaningful
image are similar, the correlation coefficients in the three directions (horizontal, vertical and diagonal) are very close to
1. Once the image is ciphered, there is hardly any relationship among the adjacent pixels, as Fig. 10 illustrates. The correla-
tion distribution of the cipher-image are scattered over the entire plane.

4.3. Differential attack analysis

In differential attack analysis, two performance indices are usually adopted to investigate the influence of a 1-bit change
in the plain-image to the corresponding cipher-image. They are number of pixels change rate (NPCR) and unified average
changing intensity (UACI), as defined by Eqs. (19) and (21), respectively.
NPCR ¼
P

i;jDði; jÞ
M � N

� 100%; ð19Þ
where Dði; jÞ is defined as
Dði; jÞ ¼
1; c1ði; jÞ– c2ði; jÞ;
0; otherwise;

�
ð20Þ
tion coefficients of the original image Baboon and the cipher-images obtained by the proposed schemes and BLP after the first encryption round.

Plain-image Algorithm 1 Algorithm 2 BLP

zontal 0.866406381 �0.000730460 0.002747506 0.003848277
ical 0.749632418 0.001095698 0.002014844 0.002382263
onal 0.708438396 �0.002011907 �0.001647457 �0.002012074

tion coefficients of the original image Elain and the cipher-images obtained by the proposed schemes and BLP after the first encryption round.

Plain-image Algorithm 1 Algorithm 2 BLP

zontal 0.975483358 �0.002568336 �0.001280413 0.000550055
ical 0.972883761 0.001834695 0.000731596 0.001650165
onal 0.970997453 �0.000734822 0.001098201 �0.004590108



Table 4
Correlation coefficients of the original image Barb and the cipher-images obtained by the proposed schemes and BLP after the first encryption round.

Plain-image Algorithm 1 Algorithm 2 BLP

Horizontal 0.860607147 �0.008247047 0.000914915 �0.004214784
Vertical 0.959820449 �0.000366569 �0.002561757 0.003417700
Diagonal 0.877414346 0.001284758 0.001464938 �0.002557567

Table 5
Average correlation coefficients of the three cipher-images obtained by the proposed schemes and BLP after first encryption round.

Plain-image Algorithm 1 Algorithm 2 BLP

Horizontal 0.900832295 0.004031487 0.001647611 0.002871038
Vertical 0.894112209 0.001098987 0.001769399 0.002483376
Diagonal 0.852283398 0.001343829 0.001403532 0.003053249

Fig. 10. Correlation plot of two adjacent pixels in the plain-image Barb in (a) horizontal; (d) vertical; (g) diagonal directions. Correlation plot of two
adjacent pixels of the cipher-image obtained by Algorithm 1 in (b) horizontal; (e) vertical; (h) diagonal directions. Correlation plot of two adjacent pixels of
the cipher-image obtained by Algorithm 2 in (c) horizontal; (f) vertical; (i) diagonal directions.
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UACI ¼ 1
M � N

X
i;j

jc1ði; jÞ � c2ði; jÞj
255

" #
� 100%: ð21Þ



Table 6
NPCR performance.

Round Algorithm 1 (%) Algorithm 2 (%) BLP (%)

1 79.7409058 99.5826721 0.1113892
2 99.6334076 99.6028900 51.8753052
3 99.6006012 99.6124268 99.5948792
4 99.6128082 99.6040344 99.6234894
5 99.5925903 99.5841980 99.6105194
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Two test images are used. One is the original plain-image Barb while another is the 1-bit modified version of Barb ob-
tained by changing the lower-right pixel from ‘‘01100010’’ to ‘‘01100011’’. In Eqs. (20) and (21), c1 and c2 are respectively
the cipher-images corresponding to the two plain-images. They are obtained by encrypting the plain-image for several
rounds using the same key.

The NPCR and UACI data are listed in Tables 6 and 7, respectively. They show that NPCR and UACI of the two proposed
schemes can reach 99.6% and 33.4% in the second encryption round. Furthermore, the NPCR of Algorithm 2 can reach 99.58%
even in the first encryption round. In Figs. 11 and 12, the NPCR and UACI data in the first five rounds are plotted, respectively.
The graphs show that the two performance indices of our schemes rise at a higher rate than BLP and so fewer encryption
rounds are required.

4.4. Speed performance

To compare the speed performance, the test image Barb at size 512� 512 is encrypted by each cryptosystem and the time
required for an encryption/decryption round is listed in Table 8.

Although some modifications and improvements have been made in Algorithms 1 and 2, the basic framework of the three
cryptosystems is still the confusion–diffusion architecture. For Algorithm 1, one encryption round is composed of two
dependent diffusion stages while for Algorithm 2, it is formed by one confusion and one diffusion stages. In BLP, an
encryption round consists of 5 confusion and one diffusion stages. Furthermore, BLP needs 3 encryption rounds to reach
Table 7
UACI performance.

Round Algorithm 1 (%) Algorithm 2 (%) BLP (%)

1 26.9027720 33.4217072 0.0366211
2 33.4751129 33.4533691 17.5086975
3 33.5353851 33.4342957 33.4701538
4 33.5403442 33.4747314 33.4617615
5 33.4915161 33.4392548 33.4877014

Fig. 11. NPCR analysis.



Fig. 12. UACI analysis.

Table 8
Time required for one encryption round.

Scheme Average encryption time (ms) Average decryption time (ms) Average total time (ms)

Algorithm 1 10 10 20
Algorithm 2 11 10 21
BLP 29 30 59

Table 9
Information entropy of cipher-images obtained by the three schemes after the first round.

Test image Algorithm 1 Algorithm 2 BLP

1 Baboon 7.9993064 7.9991471 7.9992658
2 Frog 7.9990109 7.9993080 7.9992669
3 Elain 7.9992234 7.9994010 7.9993441
4 Clown 7.9989516 7.9994198 7.9993544
5 Girlface 7.9992966 7.9992513 7.9993126
6 Boat 7.9992699 7.9992597 7.9992474
7 Bridge 7.9992465 7.9993754 7.9993052
8 Crowd 7.9993157 7.9992847 7.9992794
9 Tank 7.9991996 7.9992811 7.9992868
Total 71.9928206 71.9937281 71.9936626
Average 7.9992023 7.9993031 7.9992958
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the required NPCR level of 99.6%. Only one encryption round is required by Algorithm 2 to reach a NPCR level at 99.5826%.
For Algorithm 1, two encryption rounds are needed. Therefore, we can conclude that the proposed schemes are more effi-
cient in terms of the running time and the number of encryption rounds required.

4.5. Information entropy analysis

Information entropy is one of the criteria to measure the strength of a cryptosystem, which was firstly proposed by Shan-
non in 1949 [27]. The entropy HðmsÞ of a message source ms is defined by the following formula:
HðmsÞ ¼
X2Nb�1

i¼0

pðmsiÞlog
1

pðmsiÞ
: ð22Þ
In Eq. (22), Nb is the number of bits used to represent a pixel, pðmsiÞ means the probability of occurrence of msi and log
denotes the base 2 logarithm so that the entropy is expressed in bits. For an ideal random source emits 28 symbols, i.e.,
ms ¼ fms1;ms2; . . . ;ms28g, its information entropy is 8, as given by Eq. (22). Therefore, the information entropy of an en-
crypted image having 256 gray levels should be very close to 8. Otherwise, the information source is not sufficiently random
and there exists a certain degree of predictability for breaking the cryptosystem.
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The information entropy of the proposed schemes and BLP can be found in Table 9. As indicated by the calculated values,
the information entropy of Algorithm 1 is smaller than that of BLP, while that of Algorithm 2 is larger than that of BLP. Nev-
ertheless, all of them are very close to the ideal value 8. This means that the information leakage by the cipher-images is
negligible and that the cryptosystems are secure against entropy attacks.

5. Conclusions

Two chaos-based image cryptosystems are designed using dependent diffusion and the reverse cat map. Unlike the tra-
ditional architecture, the confusion effect of the proposed cryptosystems cannot be removed by a homogeneous plain-image.
Thus, our cryptosystems cannot be compromised by conventional known/chosen plaintext attacks. In the second proposed
cryptosystem, a new kind of mapping from a pseudorandom position to another pseudorandom position is suggested to im-
prove the confusion effect in the permutation stage. Simulation results show that the NPCR, UACI, and information entropy
of the proposed schemes are better than those of a comparable cryptosystem, BLP. All these results justify the superior secu-
rity and computational efficiency of our cryptosystems.
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