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In recent years, several methods of secure image encryption were studied and

developed through chaotic processes or functions. In this paper, a new image encryp-

tion scheme based on a coupling of chaotic function and xor operator is presented. The

main advantages of such a method are the abilities to produce a large key space to resist

brute-force attacks, and to encrypt securely images with any entropy structure assuring

indistinguishability, confusion and diffusion properties in the corresponding cipher-

images. The results of several statistical analysis about randomness, sensitivity and

correlation of the cipher-images show that the proposed cryptosystem is efficient and

secure enough to be used for the image encryption and transmission. Moreover, the

implementation of the corresponding algorithm is easy and only integers are used.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The rapid growth of technology concerns all scientific
research fields including the processing and transmission of
digital images. In many fields like military, medical, industry,
multimedia, communication or even personal, million of
images are stored or transmitted through internet every
day. Depending on the application domain, the need to
protect these images against unauthorized users has become
a challenge. Consequently, during the last years, several
image encryption schemes have been proposed. Such encryp-
tion schemes are based on scan patterns methodology [1],
double random phase encoding [2], iterative random encod-
ing and gyrator transformation [3], vector quantization [4],
quadtree compression [5,6] and chaos maps with total
shuffling [7] or Kolmogorov flow [8]. Due to the intrinsic
characteristics of chaotic systems, the use of chaos-based
cryptographic schemes seems to be an appropriate response
for secure image encryption. Indeed, the algorithms based on
chaos offer the advantages to be very sensitive to the initial
conditions and to satisfy a good combination of speed,
ll rights reserved.
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s).
confusion, diffusion and complexity [9,10]. During the
encryption process, some of such algorithms use only one-
dimensional chaotic map [11,12]. To increase the complexity
in the cipher-algorithm, two-dimensional or high-dimen-
sional chaotic maps are also used [13–17]. In the context of
image encryption, due to the strong correlation between
adjacent pixels of the images [7,16], the application of only
permutations in the encryption process does not guarantee a
good level of security [18]. For a best encryption, the majority
of methods propose to mix and to change the values of the
pixels simultaneously. Nevertheless, to assure an efficient
encryption scheme, some conditions should be fulfilled such
as a large key space, randomness of the cipher-image and a
high sensitivity on the initial conditions (seed and plain-
image). A large key space is necessary to resist brute-force
attacks [19,20] and a secure encrypted image corresponds to
an image that cannot be statistically distinguished from a
truly random sequence. Indeed, the cipher-images should
present a good level of randomness [9,10]. Moreover, the
cipher-image should be very sensitive to the used initial key
or seeds and to the plain-image [10,21].

In this paper we propose a new encryption/decryp-
tion algorithm based on a chaotic function using linear
congruences. Such a function is coupled with a xor
operation during the encryption process to increase the
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unpredictability in the cipher-image as well as a large key
space to resist to attacks. Statistical analysis are realized
on the binary sequences of the ciphers to evaluate their
cryptographic qualities. This paper is structured as fol-
lows. The description of the chaotic function and the
encryption/decryption method as well as the technical
details are given in Section 2. Section 3 presents the security
analysis of the proposed method, before concluding.

2. The proposed encryption method

Generally, the adjacent pixels in an image are strongly
correlated. Therefore, to increase the quality of the cipher-
image, the encryption process is directly achieved on the bits
of the plain-image. Let us consider a plain-image I0 of
dimension N�M (i.e. N rows and M columns). The image I0
is shuffled by using a chaotic function based on linear
congruences. This function is inspired by recurrences used
for pseudo-random numbers generation [22]. Such a function
is used to compute the positions that will be shuffled in the
encryption algorithm. The function uses a degressive modulo,
related to the size of the input vector, and is defined by the
recurrence relation

Xnþ1 ¼ ½½X
2
n mod S� � XnþXg �mod S ð1Þ

with the initial position X0 ¼ g and Xg ¼ g2, the seed g in
f1, . . . ,Lg and L being the binary size of the image I0 (e.g. for a
Initial condition (gi, gi+1)
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Fig. 1. Chaotic behaviour of the function of Eq. (1): (a) Lyapunov exponent be

(b) sensitivity on the initial conditions for 100 iterations, (c) log difference betw

iterations, and (d) Lyapunov exponent as function of L values for a fixed seed
256 gray-level image, its binary size is L¼ 8� N �M and
L¼ 3� 8� N �M for a RGB-color image). To avoid any
problem of periodicity, the space of seed values g is limited
to L. The value S is initialized to L�1 and decremented after
each iteration. The positions are computed with a memory
effect (i.e. an index i peruses the input size L and a permuta-
tion is done between each new computed position Xn and i).
Therefore, the value of a position can be permuted several
times before fixing. The principle of the function is to shuffle
the starting positions 1, . . . ,L by considering an initial seed
X0. In the following, the chaotic behaviour of the function is
characterized before describing the algorithm of encryption.
2.1. Chaotic behaviour of the function of recurrence

We analyse the chaotic behaviour of the function given
by Eq. (1) for various fixed parameters. For dynamical
systems, the Lyapunov exponent characterizes the velo-
city of evolution between two near trajectories and is
given, for dynamical system, by [23,24]

lðx0Þ ¼ lim
n-1

1

n

Xn

i ¼ 1

ln 9f 0ðxiÞ9 ð2Þ

with the iterative function xnþ1 ¼ f ðxnÞ and two near initial
conditions x0 and x0þE. A positive value of Lyapunov
exponent l represents a quantitative measurement of the
Position n

Xg1(n) Xg2(n)

0

2000

4000

6000

8000

10000

12000

 10  20  30  40  50  60  70  80  90  100

L value

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5

 0  10000  20000  30000  40000  50000

tween generated suites for two consecutive seeds from 1 to L¼10 240,

een two sequences generated by the seeds g1 ¼ 4713, g2 ¼ 4714 for 100

value g¼954.



Fig. 2. Transformations and permutations of the matrix in gray-level

image: (a) each line is an ordinate sequence of increasing values from 0

to 255 and (b) permutation of each line using Eq. (1) with the initial seed

gi ¼ i (i.e. i being the line number).
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chaotic behaviour of the function. In the present case, the
initial conditions are corresponding to the seed values and
the Lyapunov exponents between the suites generated for
two consecutive seeds are computed. As the function of
Eq. (1) is not differentiable, the value of l is given by

lðgÞ ¼
1

L

XL

i ¼ 1

ln
Vg ½i��Vg0 ½i�

g�g0

����
����, ð3Þ

where Vg and Vg0 correspond to position vectors generated by
the seeds g and g0, respectively. With the seed values gi ¼ i,
where 1r irL and L¼10 240, the Lyapunov exponents lðgiÞ

are computed for two near seed values ðgi�1 and giÞ. The
sensitivity to the initial conditions is depicted in Fig. 1(a). All
the corresponding Lyapunov exponents are positive and
belong to the interval [7.69, 7.77]. Fig. 1(b) shows an example
of the evolution of the positions, for two closed seeds
g1 ¼ 4713 and g2 ¼ 4714, as function of the position n. It
clearly appears that the two trajectories (position evolutions)
are very sensitive to the initial conditions (i.e. seed values gi).
For these two trajectories, we present the log 9Xn�X0n9 as
function of the position n (see Fig. 1(c)). Finally, for a seed
value g¼954, the evolution of the Lyapunov exponent values
as function of L is computed and presented in Fig. 1(d). The
exponents are positive and show the chaotic behaviour of the
function in Eq. (1). To illustrate the behaviour of the
recurrence function of Eq. (1) as function of the seed values
g, we construct a 256�256 matrix. Each line of the matrix is
an ordinate sequence of values 0–255 (as pixel intensity
value in gray-level, see Fig. 2(a)). Fig. 2(b) presents all the
new permuted positions with the seeds g1 ¼ 1 to g256 ¼ 256.
This shows, as an image in gray-level, the direct influence of
the function of Eq. (1) on the position values after application
of permutations with the seeds gi ¼ i. This illustrates the
sensitivity to the initial condition (seed value). Let us turn to
the whole algorithm of encryption and decryption.

2.2. Description of the algorithm

Such a chaotic function is now integrated in the
encryption algorithm. The detailed description of the
encryption algorithm is composed of four steps:
1.
 The plain-image denoted I0 is transformed into its 1D
corresponding vector Ib

0 made up of the binary
sequences at each pixel of I0 taken in sequential order.
Therefore, the binary initial vector Ib
0 contains only the

values 0 and 1 and its size is L¼ 8� N �M for a gray-
level image (or L¼ 3� 8� N �M for RGB-color
image).
2.
 A pseudo-randomized seed g in f1, . . . ,Lg initiates the
relation of recurrence given by Eq. (1).
3.
 Do loop for the initial binary vector Ib
0½i�, where i is the

current position in the vector Ib
0 and construction of a

second vector component Ib
0½j� in a new chaotic posi-

tion j¼ iþ1þXiþ1 with Eq. (1). The elements of the
vector Ib

0 are transformed to Ib
0½i� ¼ Z3 and Ib

0½j� ¼ Z1 with

Z1 ¼ Ib
0½i�,

Z2 ¼ Ib
0½j� ¼ Ib

0ðiþ1þXiþ1Þ,

Z3 ¼ Z1 � Z2, ð4Þ

where the symbol � represents the exclusive OR
operation bit-by-bit (XOR). This process is achieved
until the end of the loop.
4.
 The bits of the vector Ib
0 are gathered per package of

ð3Þ � 8 to form the cipher-image I1. That constitutes
the steps for one round for the cipher algorithm using
the seed g. A complete encryption scheme produces a
cipher-image IR, where R is the total number of rounds
used to encrypt the plain-image I0.

As mentioned at the third step (Eq. (4)), the xor operation
is combined with the permutation of elements on posi-
tions i and j to increase the impredictability in the cipher-
image IR. The main loop of the encryption scheme is given
by Algorithm 1. The encryption of the plain-image neces-
sitates the storage of all the pixels in an 1D vector and the
memory space complexity is OðLÞ. Moreover, the number
of rounds in the algorithm is automatically adapted to the
plain-image to satisfy secure encryption (see the follow-
ing subsection).

Algorithm 1 (Main loop of the encryption algorithm

(I0�!IR)).
Require: I0; L;R; g1,...,R;

Initialisation r¼ 1; F ¼ L�2; Ib
0’I0

while rrR do

i¼ 0; S¼ L�1; X ¼ gr ; Xg ¼ X � X;

while ioF do

X’½ððX � X mod SÞ � XÞþXg �mod S

j’iþ1þX

Z1’Ib
r�1½i�

Z2’Ib
r�1½j�

Z3’ðZ1þZ2Þmod 2

Ib
r�1½i�’Z3

Ib
r�1½j�’Z1

i’iþ1

S’S�1

end while
r’rþ1

end while

IR’Ib
R

return IR
The process of decryption is similar to the encryption
one, achieved in the reverse order. By starting from the
last seed gR to the first one g1, for each seed, that needs to
compute the coefficients Xi by using Eq. (1), and to store
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the value iþ1þXi in a vector V. The values of positions are
recovered by iteration on the vector V from its end while
xoring and shuffling bits in the cipher. The main loop of
the decryption scheme is given by Algorithm 2.

Algorithm 2 (Main loop of the decryption algorithm

(IR�!I0)).
Require: IR; L; R; g1,...,R;

Initialisation r ¼ R; F ¼ L�2; Ib
R’IR

while r40 do

i¼ 0; S¼ L�1; X ¼ gr ; Xg ¼ X � X;

while ioF do

X’ðððX � X mod SÞ � XÞþXg Þmod S

j’iþ1þX

V ½i�’j

i’iþ1

S’S�1

end while

j’F�1

while jZ0 do

i’V ½j�

z1’Ib
r ½j�

z2’Ib
r ½i�

z3’ðz1þz2Þmod 2

Ib
r ½j�’z2

Ib
r ½i�’z3

j’j�1

end while
r’r�1

end while

I0’Ib
0

return I0
2.3. Key space and determination of R

Given today’s computer speed, it is commonly accepted
that a key space of size smaller than 2128 is not secure
enough [25]. In the present case, for one round (i.e. R¼1), a
number of L different ciphers, corresponding to seeds g in
f1, . . . ,Lg, can be produced. Therefore, with increasing the
round number R, the total number of ciphers that can be
generated is LR. To satisfy the relation LR

Z2128 and to avoid
success of brute-force attacks, the minimum number of
rounds R1 to be used for the encryption is

R1 ¼ Floor
128

log2 L

� �
þ1: ð5Þ

The value of the round number R1 cannot be applied for all
kind of images. Indeed, for a plain-image with very low
entropy, more than R1 rounds is necessary to assure the
randomness of the cipher. The choice of the final number of
rounds R is then related to the distribution of bits ‘0’ and ‘1’ in
the plain-image. Assuming that in the plain-image, the
occurrence of the bit ‘0’ (resp. the bit ‘1’) has a probability
denoted P0ð0Þ (resp. P0ð1Þ ¼ 1�P0ð0Þ), then at each new
round r, the probability Prð0Þ is iteratively modified as
Prð0Þ ¼ P2

r�1ð0Þþð1�Pr�1ð0ÞÞ
2. To satisfy an uniform occur-

rence of bits 0 and 1, the limit of the suite Prð0Þmust be 0.50.
The goal is to find a number of rounds R2 satisfying the
relation

lim
r-R2

Prð0Þ ¼ 0:50�E1, ð6Þ
where E1 is a fixed numerical tolerance (here E1 ¼ 0:001).
With such a given tolerance value, the value of R2 is
computed with Algorithm 3. The round number R2 will be
large for plain-images with very low Shannon-entropy and
can be small for plain-images with Shannon’s entropy closed
to its maximum (i.e. 1 in base 2 or 8 in base 256). Never-
theless, for encryption of similar plain-images with the same
seeds (i.e. sensitivity to plain-image), the security level is not
maximum due to the high correlation between the cipher-
images. To avoid high correlation between the cipher-images,
an additional hypothesis must be taken into account. By
considering two plain-images I0 and I00 of size L (in bits) and
differing by only nb bits (e.g. nb¼1 for only one bit in the
worst case), the frequency t0 of identical elements between
these two images is equal to t0 ¼ ðL�nbÞ=L. The frequency
decreases according to the number of rounds and is given by

tr ¼ t2
r�1 with rZ1, ð7Þ

and must satisfy the relation

lim
r-R3

tr rE2, ð8Þ

where E2 is the acceptable criterion of similitude between
binary sequences (e.g. E2 is fixed to 0.005, corresponding to a
rate of identical bits smaller than 0.5%). The minimum
number of round R3 satisfying Eq. (8) is given by

R3 ¼ Floor log2
lnðE2Þ

lnðt0Þ

� �� �
þ1: ð9Þ

With these three indicators (R1, R2 and R3), the number
of rounds R for encryption, assuring a maximum security
level is

R¼max fR1,R2,R3g: ð10Þ

Such a number of rounds R permits to satisfy simultaneously
the criteria of key entropy, maximum Shannon’s entropy and
sensitivity to initial conditions (plain-image and key). As an
example, with a 181�259 RGB-color image of size
L¼1 125 096, the number of round R¼23 and the process
enables to produce exactly 1 125 09623

ði:e:C2462
Þ different

ciphers from different keys. The values of the parameters
concerning seeds gi, with i in f1, . . . ,Rg, can be pseudo-
randomized in the set f1, . . . ,Lg for each round. The secret
key corresponds to the sequence formed by the chosen
(randomly or arbitrarily) seed values K¼ fg1, . . . ,gRg, with
each seed value gi in f1, . . . ,Lg.

Algorithm 3 (Computation of R2 (P0ð0Þ�!R2)).
Require P0ð0Þ; E1 ¼ 0:001;

R2 ¼ 0; PR2
¼ P0ð0Þ; dif ¼ 90:50�PR2

9;
while dif 4E1 do

PR2
’½P2

R2
þð1�PR2

Þ
2
�

dif’90:50�PR2
9

R2’R2þ1

end while
return R2
3. Security analysis

A good encryption scheme should be efficient and be
able to resist to all kinds of cryptanalytic, statistical or
brute-force attacks [19,20]. To meet this challenge, any
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cryptosystem should have at least the three basic crypto-
graphic characteristics: indistinguishability, confusion
and diffusion [10,21].
1.
 Indistinguishability: for all used key, the ciphers should
not be differentiated from the outputs of a truly random
function (i.e. the ciphers should have a high level of
randomness). This property is often omitted during the
security analysis (strong condition).
2.
 Confusion: indicates that it should have no pattern or
any relationship between the plain-image and the
cipher-image. When the cipher-image respects the
previous property, the confusion property is generally
verified.
3.
 Diffusion: a difference of at least one bit in the keys
(resp. in the plain-images) leads to completely differ-
ent cipher-images (i.e. high sensitivity to key and
plain-image).

The security analysis methods satisfying these three
properties are presented and are used in the following
to show the efficiency of the scheme and its security level
in image encryption and transmission.

3.1. Indistinguishability, confusion and diffusion analysis

The purpose of the analysis is to check the three
characteristics (indistinguishability, confusion and diffu-
sion) on the cipher-images produced by the cryptosystem.
The three following approaches are used to evaluate the
randomness of the produced ciphers and the correlation
that can exist between these ciphers.
1.
 Method 1: analysis of the randomness (i.e. indistin-
guishability and confusion) quality of each cipher
belonging to a group of ciphers. These ciphers are
considered as simple binary sequences and are indivi-
dually analysed through the statistical tests suite NIST
(National Institute of Standards and Technology of the
U.S. Government). These NIST tests consist in a statis-
tical package of fifteen statistical tests developed to
quantify and to evaluate the randomness of binary
sequences produced by cryptographic random or pseu-
dorandom number generators [26]. For each statistical
test, a set of pvalue is computed. The fixed significance
level chosen is a¼ 0:01 what means that only 1% of the
Fig. 3. The RGB-color Fairy’s image: (a) the plain-image and (b) the
tested sequences are expected to fail. A sequence
passes a statistical test whenever the pvalueZa and
fails otherwise. In case of testing multiple sequences at
the same time, each test defines a proportion t as the
ratio of ciphers passing successfully the test relatively
to the total number of ciphers Nciphers (i.e.
t¼ n½pvalueZa�=Nciphers). This proportion t is compared
to an acceptable proportion taccept that corresponds to
the ratio of sequences that should pass the test. The
range of acceptable proportions taccept is determined
by using the confidence interval defined as [26]:
ð1�aÞ73

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1�aÞ=Nciphers

p
, (e.g. with 800 ciphers, the

taccept is equal to 97.94%).

2.
 Method 2: analysis of the correlation (i.e. diffusion)

between the cipher-images by computing the correla-
tion coefficients of each pair of cipher-image. This
method is used because the auto-correlation of each
cipher is indirectly analysed through Method 1 (NIST
tests). The two cipher-images are given as 1D vectors
Ix ¼ ½x1, . . . ,xl� and Iy ¼ ½y1, . . . ,yl� where the size
l¼ ð3Þ � N �M is depending on the codage of Ix and
Iy (i.e. coded in gray-level or RGB-color). Two not
correlated sequences are corresponding to correlation
coefficient CIxIy

¼ 0 and a strong correlation occurs for
CIxIy

C71 [16,19]. We classify all the coefficients CIxIy

calculated for each pair of sequence and the distribu-
tion of these coefficients is given by a histogram.
3.
 Method 3: to bring an additional response to the
correlation between the cipher-images (i.e. diffusion),
the two following indicators are used: NPCR and UACI.
The NPCR gives an evaluation of the percentage of the
difference between pixel values of two images and the
UACI measures the average intensity of differences
between these two images [7].

In the following, these methods are applied to analyse the
sensitivity of the cryptosystem on the keys and on the
plain-images. Such a process is illustrated through two
images: one RGB-color and the second in gray-level.

The first image IF
a

is Fairy’s image (i.e. a 181�259 RGB-
color image with L¼1 125 096) illustrated in Fig. 3(a). An
example of encryption of such an image is given in
Fig. 3(b) and is achieved with the key Ka

F ¼ fg1, . . . ,g23g

(i.e. R¼23). The sequence of seed values for fg1, . . . ,g23g is
{17 654, 84 287, 7487, 1984, 12 314, 10, 74 120, 130 014,
95 210, 1914, 70 553, 2835, 19 800, 299 314, 83 721,
corresponding cipher-image obtained with the key Ka
F.
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610 990, 210, 65 521, 396, 1 109 094, 230 014, 63 010,
10 246}. With Fairy’s image, the histograms correspond-
ing to the associated blue, green, and red channels before
and after encryption with the key Ka

F are shown in
Fig. 4(a–f).

The second image IL
a
, illustrated in Fig. 5(a), is the

Lena’s image (i.e. a 512�512 gray-level image with
L¼2 097 152). Fig. 5(b) shows the cipher-image obtained
with the key Ka

L ¼ fg
0
1, . . . ,g024g (i.e. R¼24). The seed

sequence is fg01, . . . ,g024g ¼ f75,g1, . . . ,g23g. Fig. 5(c,d) show
the gray-level histograms of Lena’s image before and after
encryption with key Ka

L. One can remark that, for these
two images, the occurrence distributions of pixel values
after encryption are quasi-uniform.
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3.2. Key sensitivity analysis

The sensitivity on the secret key is an essential factor
in any image encryption scheme. Indeed, a small devia-
tion in the input should cause a large change in the
output. For Fairy’s image, the encryption process assures
a maximum security with R¼23 (i.e. a key-space of 462
bits of entropy). We analyse sensitivity of the produced
cipher-image as function of the seed values. The consid-
ered encryption keys fg1, . . . ,g23g are the seed sequences
with fg1, . . . ,g22g¼{17 654, 84 287, 7487, 1984, 12 314,
10, 74 120, 130 014, 95 210, 1914, 70 553, 2835, 19 800,
299 314, 83 721, 610 990, 210, 65 521, 396, 1 109 094,
230 014, 63 010} and g23 in f10 001, . . . ,10 800g. The seeds
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gi, with 1r ir22, are chosen in the set f1, . . . ,1 125 096g.
For Lena’s image, the analysis is achieved for R¼24 (i.e.
assuring a key-space of 504 bits of entropy) with
fg01, . . . ,g024g ¼ f75,g1, . . . ,g23g. In each case, the number of
generated ciphers is equal to 800. We note that, for the
last seed value (i.e. g23 for Fairy’s image and g024 for Lena’s
image), the selection of 800 successive seed values has
been done to analyse the sensitivity due to the seed
values on the produced cipher-images. Moreover, the
analysis is also achieved on a set of five 256�256 RGB-
color images and a set of five 512�512 gray-level images.
These images come from the USC-SIPI image data base
and are corresponding to the RGB-color images 4.1.01.tiff
to 4.1.05.tiff (resp. the gray-level images 7.1.01.tiff to
7.1.05.tiff) in the miscellaneous volume. For each down-
loaded image, 800 cipher-images are produced by using
the keys fg1, . . . ,g23g and fg01, . . . ,g024g for RGB-color and
gray-level images, respectively.

3.2.1. Analysis with Method 1

The goal of the analysis is to test the randomness
quality of the 800 produced ciphers as function of the
seed values for the two plain-images (Lena and Fairy). The
results obtained with the NIST tests on these ciphers, are
given in Table 1. For the tests achieved on the set of the
five RGB-color (resp. the five gray-level images), the
indicators are the average values taverage of ratio t and
are given in Table 2. For the tests ‘‘Non Overlapping’’,
‘‘Random Excursions’’ and ‘‘Random Excursions Variant’’
the smallest percentage of all under tests are presented.
We notice that, in Table 1, the ciphers pass successfully all
the NIST tests (tZtaccept ¼ 97:94%) and can be considered
as good candidates of random binary sequences. More-
over, the results of Table 2 show that all the average
values taverage are larger than taccept ¼ 97:94%. That shows
the quality of tested ciphers as function of the key and for
different plain-images. We note that the analysis refers to
the first property about ‘‘indistinguishability’’ (strong
condition).

3.2.2. Analysis with Method 2

For each plain-image (Fairy and Lena), the correlation
coefficients between the 800 produced cipher-images
are computed. The histograms of the coefficients CIxIy

between the cipher-images are presented in Fig. 6(a).
We show that these coefficients are close to 0 and belong
to the interval [�0.0085, 0.0085]. Moreover, 99.18% of the
values of the correlation coefficients between the ciphers
produced from Fairy’s image do not exceed absolute
values larger than 0.0065 and 99.07% of the values of



Table 1
Results of the NIST tests on the 800 produced ciphers for Fairy’s and

Lena’s images. The ratio t of pvalue passing the tests and the result for

each test are presented.

Test name Fairy’s image Lena’s image

t Result t Result

Frequency 98.00 Success 99.12 Success

Block-frequency 99.00 Success 98.75 Success

Cumulative sums (1) 98.12 Success 99.25 Success

Cumulative sums (2) 98.00 Success 99.37 Success

Runs 98.75 Success 98.87 Success

Longest run 99.37 Success 99.62 Success

Rank 99.00 Success 99.25 Success

FFT 98.37 Success 98.87 Success

Non-overlapping 98.00 Success 98.50 Success

Overlapping 99.12 Success 98.75 Success

Universal 98.12 Success 98.50 Success

Approximate entropy 98.50 Success 98.62 Success

Random excursions 98.01 Success 98.04 Success

Random e-variant 98.41 Success 98.22 Success

Serial (1) 98.87 Success 99.00 Success

Serial (2) 98.87 Success 99.00 Success

Linear complexity 98.75 Success 98.87 Success

Table 2
Results of the NIST tests on the 800 produced cipher-images for the set

of five RGB-color and gray-level images. The average value taverage of the

ratio t of pvalue passing the tests and the result for each test are given.

Test name Set of RGB-color

images

Set of gray-level

images

taverage Result taverage Result

Frequency 99.17 Success 99.04 Success

Block-frequency 98.74 Success 99.02 Success

Cumulative sums (1) 99.12 Success 98.95 Success

Cumulative sums (2) 99.17 Success 99.14 Success

Runs 99.10 Success 99.02 Success

Longest run 98.92 Success 98.84 Success

Rank 99.12 Success 98.87 Success

FFT 98.92 Success 98.67 Success

Non-overlapping 98.47 Success 98.40 Success

Overlapping 98.42 Success 98.17 Success

Universal 98.82 Success 98.84 Success

Approximate entropy 98.62 Success 98.79 Success

Random excursions 98.47 Success 98.37 Success

Random e-variant 98.48 Success 98.40 Success

Serial (1) 99.07 Success 98.94 Success

Serial (2) 99.04 Success 99.00 Success

Linear complexity 98.89 Success 98.97 Success
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the correlation coefficients between the ciphers produced
from Lena’s image have absolute values smaller than
0.0048. For the set of five RGB-color images (resp. five
gray-level images), the histogram of correlation takes into
account all the correlation coefficients between the pro-
duced ciphers (see Fig. 6(b)). The correlation coefficients
are close to 0 and belong to the interval [�0.0085,
0.0085]. More than 99.08% of the values of the correlation
coefficients between the ciphers produced from the five
RGB-color images do not exceed absolute values larger
than 0.0061 and 99.42% of the values of the correlation
coefficients between the ciphers produced from the five
gray-level images have absolute values smaller than
0.0053. These results show that only a very small (or
negligible) correlation can be detected between the
cipher-images. Such an analysis refers to the second
property: the ‘‘diffusion’’. The quality of randomness and
decorrelation between cipher-images are essential for any
image encryption scheme to resist chosen-ciphertext
attacks.

3.2.3. Analysis with Method 3

Actually in the previous analysis of correlation, the key
sensitivity has already been tested on a bloc of 800 successive
keys for the two plain-images. To illustrate the information
given by the NPCR and UACI coefficients, the plain-images for
Fairy and Lena are encrypted by using the keys Ka

F ¼

fg1, . . . ,g22,10 246g and Ka
L ¼ f75,g1, . . . ,g22,10 246g, respec-

tively. We analyse the cipher-images produced by encryption
with two slightly different keys Kb

F ¼ fg1, . . . ,g22,10 245g,
Kc

F ¼ fg1, . . . ,g22,10 247g for Fairy’s image and Kb
L ¼

fg01, . . . ,g023,10 245g, Kc
L ¼ fg

0
1, . . . ,g023, 10 247g for Lena’s

image. The correlation, NPCR and UACI coefficients for the
Fairy and Lena are given in Tables 3 and 4, respectively. These
small values of the correlation coefficients show that the
cipher-images are weakly correlated and that the cryptosys-
tem is very sensitive to the seed values. In addition, the same
study is applied on each of the five RGB-color images (resp.
five gray-level images), the average and the standard devia-
tion values for the correlation coefficients, the NPCR and the
UACI are presented in Tables 5 and 6.

3.3. Plain-image sensitivity analysis

To analyse the sensitivity to the plain-image (i.e.
analysis of the diffusion property), a modification of only
one bit is applied on the binary components of the plain-
image. Therefore, for each case (Fairy’s and Lena’s
images), we consider three initial images almost identical
(but differing by only one bit). The encryption of these
three plain-images with different seeds produces com-
pletely different cipher-images. The encryption of these
plain-images with the same seeds can produce very close
cipher-images. The goal is to analyse the propagation of
the initial difference between three near plain-images
through encryption process. First, we consider as original
image in RGB-color, Fairy’s image IF

a
of Fig. 3(a). Its pixel

values, at the upper left position (0,0) (resp. lower right
position (180,258)), are [183, 145, 133] (resp. [41, 24, 21])
for the blue, green and red channels. A second image IF

b

consists in duplicating Fairy’s image and in changing the
first pixel value of the blue channel from 183 to 182. The
third image IF

c
consists in duplicating again Fairy’s image

and in changing the last pixel value of the red channel
from 21 to 20. Between these three images, no visual
difference can be observed. We compute and analyse the
correlation coefficients, the NPCR (number of pixel value
change rate) and the UACI (unified average changing
intensity) between the corresponding three cipher-
images using the same key. The same approach is applied
on Lena’s image IL

a
to produce a second image IL

b
obtained

by changing the first pixel gray-level value (i.e. 162–163)
and for the third image IL

c
by modifying the last pixel value

(i.e. 108–109). The results for Fairy’s and Lena’s images
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Fig. 6. Distribution of correlation coefficients CIx Iy
: (a) the coefficients of Fairy’s and Lena’s tested cipher-images and (b) the coefficients for the sets of five

RGB-color and gray-level images.

Table 3
Correlation coefficients, NPCR (in %) and UACI (in %) between the three

cipher-images for Fairy using three slightly different keys Ka
F, Kb

F and Kc
F.

Keys 1/2 Corr. NPCR UACI

Ka
F=Kb

F
�0.0007 99.61 33.42

Ka
F=Kc

F �0.0030 99.61 33.55

Kb
F=Kc

F
0.0044 99.61 33.39

Table 4
Correlation coefficients, NPCR (in %) and UACI (in %) between the three

cipher-images of Lena using three slightly different keys Ka
L, Kb

L and Kc
L.

Keys 1/2 Corr. NPCR UACI

Ka
L=Kb

L
0.0008 99.62 33.45

Ka
L=Kc

L 0.0014 99.64 33.47

Kb
L=Kc

L
0.0004 99.63 33.47

Table 5
Average and standard deviation values of the correlation coefficients,

NPCR (in %) and UACI (in %) between the cipher-images for the set of the

five RGB-color images using the three slightly different keys Ka
F, Kb

F and

Kc
F.

Keys 1/2 Corr. NPCR UACI

mcorr scorr mNPCR sNPCR mUACI sUACI

Ka
F=Kb

F
0.0021 0.0011 99.60 0.02 33.43 0.07

Ka
F=Kc

F 0.0014 0.0007 99.60 0.01 33.43 0.05

Kb
F=Kc

F
0.0014 0.0010 99.61 0.01 33.40 0.07

Table 6
Average and standard deviation values of the correlation coefficients,

NPCR (in %) and UACI (in %) between the cipher-images of the five gray-

level images using the three slightly different keys Ka
L , Kb

L and Kc
L.

Keys 1/2 Corr. NPCR UACI

mcorr scorr mNPCR sNPCR mUACI sUACI

Ka
L=Kb

L
0.0011 0.0004 99.60 0.02 33.47 0.04

Ka
L=Kc

L 0.0009 0.0005 99.61 0.01 33.49 0.02

Kb
L=Kc

L
0.0014 0.0008 99.60 0.01 33.42 0.02

Table 7
Correlation coefficients, NPCR (in %) and UACI (in %) between the three

cipher-images produced from the three slightly different plain-images of

Fairy IF

a
, IF

b
and IF

c
. Two examples of encryption are achieved with the keys

Ka
F and Kc

F.

Image 1/2 Ka
F Kc

F

Corr. NPCR UACI Corr. NPCR UACI

Ia
F=Ib

F
�0.0017 99.60 33.43 �0.0013 99.64 33.43

Ia
F=Ic

F
0.0059 99.62 33.35 0.0016 99.60 33.43

Ib
F=Ic

F
�0.0019 99.61 33.54 0.0017 99.60 33.38
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are shown in Tables 7 and 8, respectively. The values of
the coefficients in Tables 7 and 8 show clearly the
difference of the tested cipher-images produced by
slightly different plain-images.

A statistical analysis on plain-image sensitivity is also
achieved by producing 100 near images for each initial
Fairy’s and Lena’s images. For Fairy’s image, the blue
channel value of the first pixel (i.e. 183) is decremented
by 1 (i.e. pixelFð0;0Þ ¼ ½183, . . . ,84�), forming 100 similar
images excepting at the blue channel value. The same
process is applied on the gray-level Lena’s image, where
the value 162 of the first pixel is decremented by 1 to
obtain 100 near images (i.e. pixelLð0;0Þ ¼ ½162, . . . ,63�).
The used keys for the encryption are Ka

F (resp. Ka
L) for

Fairy’s (resp. Lena’s) images. For each set of 100 near
images, the average and the standard deviation values of
the correlation coefficients, the NPCR and the UACI are
computed. Each pair of modified images is analysed and
the results are presented in Table 9, for both sets of
modified Fairy’s and Lena’s images. The average values of
correlation coefficients, NPCR and UACI, are stable with
only small standard deviations. The obtained results,
clearly show the high sensitivity related to the plain-
image. The encryption process assures a maximum level
of security by taking into account simultaneously the key
space, the maximum Shannon’s entropy, the randomness
of the cipher-images and the plain-image sensitivity
against differential attacks.



Table 8
Correlation coefficients, NPCR (in %) and UACI (in %) between the three

cipher-images produced from the three slightly different plain-

images of Lena IL

a
, IL

b
and IL

c
. Two examples of encryption are achieved

with the keys Ka
L and Kc

L.

Image 1/2 Ka
L Kc

L

Corr. NPCR UACI Corr. NPCR UACI

Ia
L=Ib

L
�0.0001 99.60 33.46 0.0015 99.60 33.46

Ia
L=Ic

L
0.0008 99.60 33.47 �0.0010 99.60 33.52

Ib
L=Ic

L
0.0048 99.62 33.37 0.0002 99.63 33.51

Table 9
Statistical analysis on correlation coefficients, NPCR and UACI for the 100

near plain-images produced from Fairy’s and Lena’s images, respectively.

Indicator Fairy’s images Lena’s images

mF sF mL sL

Corr. coef. 0.0022 0.0017 0.0015 0.0011

NPCR 99.61 0.01 99.60 0.01

UACI 33.45 0.06 33.46 0.04

Table 10
Comparison of time complexity for encryption/decryption of gray-level

images for several image sizes. Each image pixel is encoded on 8 bits.

The entropy of the produced key space is presented.

Image size

(in pixels)

R-value Entropy of the

key-space

(bits)

Encryption/

decryption (s)

Ref. [12]

64�64 18 270 0.03/0.04 0.19

128�128 20 340 0.14/0.15 0.95

256�256 22 418 0.90/0.96 6.01

512�512 24 504 7.86/8.02 35.59

1024�1024 26 598 44.50/45.72 253.88
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3.4. Time complexity

Finally, the time complexity of the algorithm for
encryption/decryption is evaluated. Several images for
different sizes have been considered and the time com-
plexity is given. The time complexity analysis is achieved
on Intel(R) Pentium(R) M processor 1700 MHz with
2048 MB RAM personal computer. The algorithm is coded
in C and compiled by gcc-4.6.0 on Fedora release 11
(Leonidas). The results are shown in Table 10. The
encryption scheme permits a gain factor of about five
relatively to the method used in Ref. [12] (see Table 10).
Instead, the range of the key space is increased (e.g. the
key-space entropy in Ref. [12] is only 84, 75 and 113 bits).
That necessarily leads to increase the complexity time for
the algorithm but assures a secure transmission especially
if the computation time is not a constraint.
4. Conclusion

A new image encryption scheme using a chaotic function
based linear congruences was presented. The process is the
coupling of a chaotic function with the xor operation during
the binary treatment of the cipher algorithm. This method
has drastically disrupted the internal binary structure of the
images and progressively induced randomness characteris-
tics. We have shown that such a scheme is able to produce a
large number of cipher-images, whose cryptographic quali-
ties have been evaluated through different statistical ana-
lyses. The key space is large enough to resist brute-force
attacks and statistical analysis show the high key and plain-
image sensitivity. The cipher-images pass successfully the
NIST tests and a negligible correlation between cipher-images
can be guaranteed. The advantage of the encryption scheme
is its automatic adaption to the entropy of the plain-image
assuring secure cipher-image. Moreover, only integers are
used during the encryption/decryption processes that is
important for the portability architecture. Finally, we con-
clude that the proposed scheme is expected to be useful for
applications with a secret key constituted by the used seed
values.
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