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Today, we all live in a cyber world, and modern technologies involve fast
communication links, potentially between billions of devices, via complex networks
(satellites, mobile phones, the Internet, Internet of Things, etc.). Thus, the question of
how we protect public communication networks and devices from passive and active
attacks that could threaten public safety (sabotage, espionage, cyber terrorism) and
personal privacy has become one of great importance.

Cryptography and Chaos-based Cryptography

SECURE DATA EXCHANGE
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Outline
Q Generalities
 Classical cryptography
QO AES Algorithm

QO Chaos-based data security
O What is chaos? Why using chaos to secure information?
O Some known chaotic maps used in chaos-based security

O Design of efficient stream ciphers based on pseudo random
number generators of chaotic sequences (PRNGs-CS) &

performance evaluation

O Design of efficient chaos-based cryptosystems (block ciphers) and

performance evaluation
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Outline
Q Design of efficient chaos-based steganography systems

O Appendix
O Various block cipher modes: Symmetric key algorithms

O Error Propagation : summary of bit errors on decryption
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Generalities

l Cryptography Primitives for Information Security i
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Chaos & Cryptography

Both chaotic map and encryption system are deterministic
Both are unpredictable, if the secret key is not known

Both used iterative transformation

Cryptography
Mathematical study
& Techniques for
Secure
I Communications

Chaos Theory
Mathematical study
of Nonlinear
Dynamical Systems

Chaos-based Cryptography




Type of classical Encryption/Decryption algorithms

7 3 Operate on
K=Kg=Kp a block of bits :
64, 128, 256, ....
Symmetric | .| gjock Ciphers
ecret-Key
Encryption
Decryption ‘Stream Ciphers
Algorithms [{KD different from K¢ ]

Asymmetric
Public-Key

Operate on:
a single bit or byte
or N-bit sample

Public Private

Symmetric encryption is # 1000

faster than asymmetric encryption
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Classical cryptosystems
Symmetric key algorithms

Principle

Passive Attacks

Alice l Ciphertext C

Active Attacks Bob

Encryption
Algorithm

Decryption |

—> |/Channel >

Algorithm

l Plaintext P 1‘

WShared Secret/Km

A. Kerckhoffs 19t century : T I Plaintext P
Fundamental assumption A

in cryptanalysis is that the
secrecy reside entirely in
the ke;./ y Shared Secret Key K J

Passive attacks: Pb of Confidentiality

Active attacks: Pb of Data Integrity and Message Authentication
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Model of Symmetric Cryptosystem

5 P
Cryptanalyst > R
P C = EK, P)I P = D(K,C)
Message Encryption Decryption L
source ? Algorithm —>|/Channel |—> Algorithm > Bl
Key source > Secure Channel

Definition: A cryptosystem is a six-tuple {P,C, X, &€, D, A}, where the following
conditions are satisfied:
1. P is afinite set of possile plaintexts (message space)
2. Cis afinite set of possible ciphertexts
3. XK, the key space, is a finite set of possible keys
4, Foreach K € K, thereis an encryption rule E(K,P) €
€ and a corresponding decryption rule D(K, C) € D, such that:
D(K,E(K,P))=P€e®P
With P = {p11p21 ""pn}’ C = {Cl:CZI ’”;Cn}; E(Kr pl) = (i and D(Kr Ci) =p; € A
A is a finite set (alphabet of definition). Example: A ={0,1}; A =1{0,1,2,---,255}
Clearly, E(K,p;) is an injective function (i.e.,one — to — one). Safwan El Assad 10



Public-Key cryptosystems: Asymmetric algorithms

I ——> PRD
Principle: Secrec Cryptanalyst _
P y yp yst > p
Alice ¢ = E(PUB, P) | T
— Encryption HS@%E = :
Hello —>{ Algorithm —>[Channel ||—> Aelcryr_’t;]"” 5 Hello
(RSA, ECC) gornthm-
A 4 P=D(PRbC)
‘{Bob’s Public key: PUD ? “ ‘{Bob’s Private key: PRb Ga== ‘"
Exhaustive attacks: an optical computer is # 1,000 times faster than a classical computer
Principle: Authentication Cryptanalyst ——> PRa
C = E(PRa, P) T
PUa
Encryption HS@%E = -
Hello —>»{ Algorithm —>»1/Channel |—> A(::icryptrl]on >3 Hello
(RSA, ECC) gonthm-
A 4 P=D(PUaC)

‘{Alice’s Private key: PRa G:HJ ‘(Alice’s Public key: PUa 1
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Principle of chaos-based cryptosystems
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Advanced Encryption Standard: AES

References:

Advanced Encryption Standard (AES), FIPS PUB 197, November 26,
2001.

Books:

Joan Daemen and Vincent Rijmen, “The design of Rijndael”.
Springer, 2010.

William Stallings, “Cryptography and Network Security, Principles
and Practice”. Sixth Edition, Pearson, 2014. Chapter 5.

Christof Paar and Jan Pelzl, “Understanding Cryptography”.
Springer, 2010. Chapter 4.

Douglas. R. Stinson, “Cryptography theory and Practice”. Third
edition, Taylor & Francis Group, LLC, 2006. Chapter 3.

Presentations Power Point and demo
AES-William_Stallings.ppt
Understanding_Cryptography_ Chptr_4---AES.ppt

CrypTool project: www.cryptool.org by Enrique Zabala

Safwan El Assad
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Advanced Encryption Standard: AES

Learning Objectives: W. Stallings

* Present an overview of the general structure of AES

» Understand the transformations used in AES Encryption

Byte Substitution layer

Diffusion layer:
Shift rows

Mix columns

Key Addition layer

= Explain the AES Key Expansion Algorithm.

= Understand the use of Polynomial Arithmetic in GF(28)
= Euclidian algorithm and Extended Euclidian algorithm
= Describe the Decryption process

= Practical Issues

Safwan El Assad
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Overview of the AES Algorithm

AES origins: Lawrie Brown

» Clear a replacement for DES (Data Encryption Standard) was
needed

> have theoretical attacks that can break it
> have demonstrated exhaustive key search attacks
Can use Triple-DES - but slow, has small blocks

US NIST (National Institute of Standards and Technology)
issued call for ciphers in 1997

15 candidates accepted in Jun 98

5 were shortlisted in Aug-99

Rijndael was selected as the AES in Oct-2000
Issued as FIPS PUB 197 standard in Nov-2001

V V

V. V V VY
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Overview of the AES Algorithm

The AES Cipher - Rijndael

128

128

P +> AES ﬁzb C
$ 1z
256
K
The State
Input array

ing in, ing iny,

in, Ing ing Ing3

slr,c] =in[r+4c] for 0<r<4and 0 <c < 4.
out[r + 4c] = s[r,c] for 0 <r<4and 0 <c < 4.

Safwan El Assad

-

Key size

Number of rounds

(bits/bytes/words)

State array

So,1 | So,2
S1,1 Si1,2
Sz1 S22

S3,1 S3,2

Wo = S0,0 S1,0 52,0 53,0
W3y = S02 512 522 532

128 /16 /4
192 /24 /6
256/32/8

Nr
10

12
14

Output array

out, out,
out, outs
out, out

out, out,

W1 =3501S511S521S531
W3 = 503513523533

outg
outg
out,,

out,,

out,,
Out,q

out,.
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Round 1

Round Nr-1

Round Nr

—

—

—_—

Safwan El Assad

Plaintext (16 bytes)

K0=

Key Addition Layer

«—

W
Byte Substitution Layer

- Shift Rows Layer

|
: v
|

Mix Columns Layer

K1=

«—

Key Addition Layer
I

Byte Substitution Layer

' Shift Rows Layer

¥

‘Mix Columns Layer

w|0, 3]

Nr =10
Key K (16 bytes)

Ko

wl4,7] |,

| Key Expansion 1

U Kyp—1 = W[3€V39]

‘Key Addition Layer

Y —

Key Expansion Nr-1

v

Byte Substitution Layer

—V
' Shift Rows Layer

v

Kyy = w[40, 431

S

- Key Expansion Nr

Key Addition Layer
A 4
Ciphertext (16 bytes)

AES
Encryption
Bloc Diagram
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Hexadecimal notation: 9a = 1001 1010 (1 byte)

AES Encryption Round for rounds 1, 2,..., Nr-1

Hex

y

0

1

2

3

4

5

6

7

8

9

a

b

C

e

f

63

/C

77

7b

f2

6b

6f

c5

30

01

67

2b

fe

d7

ab

76

ca

82

c9

7d

fa

59

47

fO

ad

d4

az2

af

9c

a4

72

cO

b7

fd

93

26

36

3f

f7

CcC

34

ab

e5

f1

71

d8

31

15

04

c’/

23

c3

18

96

05

9a

07

12

80

e2

eb

27

b2

75

09

83

2C

la

1b

6e

5a

a0

52

3b

d6

b3

29

e3

2f

84

53

dl

00

ed

20

fc

bl

5b

6a

cb

be

39

4a

Ac

58

cf

do

ef

aa

fb

43

4d

33

85

45

f9

02

7f

50

3C

of

a8

51

a3

40

8f

92

9d

38

f5

bc

b6

da

21

10

ff

f3

d2

cd

Oc

13

ec

5f

97

44

17

c4d

ar

/e

3d

64

5d

19

/3

60

81

4f

dc

22

2a

90

88

46

ee

b8

14

de

sSe

Ob

db

el

32

3a

Oa

49

06

24

5c

c2

d3

ac

62

91

95

ed

79

e’

c8

37

6d

8d

d5

4e

a9

6c

56

f4

ea

65

7/a

ae

08

ba

78

25

2e

1c

ab

b4

c6

e8

dd

74

1f

4b

bd

8b

8a

70

3e

b5

66

48

03

f6

Oe

61

35

57

b9

86

cl

1d

Oe

el

f8

98

11

69

d9

8e

94

9b

le

87

e9

ce

95

28

df

X
—lo|a|o|T|o O] o|N|o|u| Ml w| N[O

8c

al

89

Od

bf

e6

42

68

41

99

2d

Of

b0

54

bb

16

= S-box is the only nonlinear element of the AES:
ByteSub(B;)®ByteSub(B;) + ByteSub(B;®B;), fori,j=0,-,15

19 a0 9a
3d f4 c6
e3  e2 8d
be 2b 2a

Sub
Bytes

v

d4 e0 b8
27 bf b4
11 98 5d
ae f1 e5

e9
f8
48
08

le
41
52
30

S(ga)hex — (b8)hex

= S-box is Bijective: one-to-one mapping of input and output bytes
» S-box is uniquely reversed

Safwan El Assad 18



AES Encryption Round for rounds 1, 2,..., Nr-1

d4 e0 b8 1le
27 bf b4 41
11 98 5d 52
ae f1 e5 30

Mix Columns

No shift

One position left shift
Two positions left shift

Three positions left shift

d4 |e0 b8 |1le
bf b4 |41 |27
5d |52 |11 |98
30 lae f1 |e5

Each column is processed separately

S
0203 01 01 zo’o S,O'O Each byte is replaced by a value dependent
01020501, 1210} _ 210 on all 4 bytes in the column
01010203 52,0 S'20
0301 0102 S30 s’ Effectively a matrix multiplication in GF(28)

>0 using prime poly P(x) = x8 + x* + x3 +x+ 1

02 |03 |01 |01 d4 |e0 b8 1le 04 e0 48 28

01 /02 |03 |01 bf (b4 41 |27 | — 66 (cb f8 06

01 /01 |02 |03 % 5d 52 111 98 | — 81|19 |d3 26

03 |01 |01 |02 30 |ae |f1 |eb5 eS 9a |7a |4c

Safwan El Assad
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AES Encryption Round for rounds 1, 2,..., Nr-1

Add round Key K4 produced by the Key Expansion column by column

04 e0 48 28
66 cb f8 06
81 19 d3 26
e5 9a 7a 4c

Key size
(bits/bytes/words)
128/16/4

192 /24 /6
256/32/8

Safwan El Assad

a0

88

23

2a

54

a3

6C

fa
@ fe

2C

39

/6

17

bl

39

05

Kl =W[4l 7]

Key Expansion

Number of rounds

Nr
10

12
14

a4 68 |6b |02
— |9c 9f |5b 6a
— |7f |35 |ea |50
f2 |2b |43 49
Number of Expanded Key size
subkeys (bytes/words)
11 176/44
13 208/52
15 240/60

20



k0 k4 k8 k12
Ky Ks Ko Ky
Round key O k2 k6 k10 k14
is the original k3 k7 k11 k15
AES key v v v v

Round key 0 | W[O] = WI[1] V\i[Z] W[3]

The function G() G <9
adds nonlinearity
and removes

symmetry in AES

Round key 1 W[|4] WES] W[|6] WI7]
|

by
Round key 9 | W[36] W[37] W[38] WI[39]

G [<?

Round key 10 |W[40] W[41] W[42] W[43]

Key Expansion algorithm
for 128-bit Key AES

Function G W
of round i

By, B, B, B,

Bl BZ BB B0
v v

@@HSIHSI

B!l ) ! ,

ETTT

/l/32

w!

Safwan El Assad 21



Roundi  RCJi]

{01}

{02}

{04}

{08}

{10}

{20}

{40}

{80}

© 00N O O &~ W DN PP

{1b}

=
o

{36}

Safwan El Assad

AES Key expansion for 128-bit

The round constant Rcon is used to eliminate the similarity between
the ways in which round keys are generated in different rounds.

it defined as:

Rcon[i] = (RC]i], 0, 0, 0) with RC[1] =1,

RC[i] = 2 x RC[i-1] and with multiplication defined over GF(Z“), e.g,
at round 9:

{02} x {80} = (000000010) x (10000000) = (00000000) & (00011011) =
(00011011) = {1b}

Key 0 ---> (w[0], w[1], w[2], w[3])
The other array elements are computed as:
The leftmost word of a round key w[4i], where
1=1,...,10, is: w[4i] = w[4(i-1)]+G(w[4i-1]);
G() is anonlinear function with a 4-byte input and output.
The remaining 3 words of around key are computed recursively as:
w[4i+j] = w[4i+j-1] + w[4(i-1)+j], i=1,...,10; j=1, 2, 3
22



AES Arithmetic
Finite Field Arithmetic

* Iln AES all operations are performed on 8 bits bytes. The arithmetic
operations of addition, subtraction, multiplication, division and inversion are
performed over the Extension Finite Galois Field GF(28) of 256 elements [0, 1,
..., 255], with the irreducible polynomial: P(x) = a8 +x* +x3 +x +1

= Arithmetic on the coefficients is performed over GF(2) which is the smallest
Prime Field. Addition modulo 2 is equivalent to XOR gate and multiplication is

equivalent to the logical AND gate.
Remark:

= |n the extension field GF(28) the order = 256 is not a Prime Number, then the
addition and multiplication operation cannot be represented by addition and
multiplication of integers modulo 28. For that:

= |nthe extension field GF(28) elements are not represented as integers but as
polynomials with coefficients in GF(2). Computation in GF(28) is done by
performing a certain type of polynomial arithmetic. The polynomials have a

maximum degree of 7. 23



AES Arithmetic

» Each element A € GF(2?) is represented as:
A(X) = a7x” + agx® + -+ a;x + @y, @;€ GF(2) =[0,1]
There are exactly 22 = 256 such polynomials.

The set of these 256 polynomials is the finite field GF(22).

= Every polynomial can simply be stored in digital form as an 8-bit word:
A = (a7, aq, a5, a4, a3, @z, @y, @)
We do not have to store the factor x7, x°, etc. It is clear from the bit positions to

which power x! each coefficient belongs.

24



AES Arithmetic
Addition and Subtraction in GF(2%)

Let A(x), B(x) € GF(23).

The sum or difference of two elements is:
7

€(x) = A(x) + B(x) = A(X) — B(x) = Z e,
=0
¢;=(a; +b;) mod 2 = (a; — b;) mod 2 = a;Db;
Note that we perform modulo 2 addition (or subtraction) with the coefficients.

Example of addition modulo 2:

A =x2"T+ 2+x*+ 1
B(x) = X+ 2+ 1
C(x) =x" + xt + x?

In binary notation: (10110001) @ (00100101) = (10010100)

In hexadecimal notation: {b1} @ {25} = {94}

Safwan El Assad 25



AES Arithmetic

Brief Reminder
Polynomial Arithmetic
* Multiplication of two polynomials:

) = 3 i,.‘i‘,, ) = b! ’
A(x) bz;ax mf(x) ]Z )
€(x) = A() x B(¥) = ZZ“’* bt = ) Zaﬂ%_ﬂlxn, =0 €0,
=0 j=0 n=0 Li=0

nm

= Zﬂ,}bn_i, a;, b;, ¢; € GF(2) = {01}

Is the discrete convolutional product of the coefficients of two polynomials

co = @agbg, ¢1=laghy +ajbyl, 2= [agh; + a1by + azby]

Cm+q-1 = [am=1bq + ambq=1]» Cm+q= Ambyq

Safwan El Assad
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Example of polynomials multiplication over GF(2)

|
: I
: I
: AX) =x"+x° +x* +1, B(x)=x°+x%+1 |
: AX) xB(x)=x"T+ 2+x*+ 1 |
|
| x (2% + 2+ 1) |
| :
: I
|
l xT+  xS+at+ 1 :
|
| 0+ xT+x8+ 2 :
|
: 22+ x10+2%+ x> :
: I
: I
|
| X124 X104 X +xt+ 2+ 1 :
|
: I

Verification: m=7, ¢g=5
Cop = aobo =1, €1= [dobl + albo] =0, C2= [Qobz + a1b1 + azbo] =1

Cm+qg-1 = [am=1bq + ambq=1] =0, Cm+q= Cm = 1

Safwan El Assad 27



AES Arithmetic

| |
| |
I = Polynomials division over GF(2) :
|
: If we divide €(x) by D(x), we get a quotient Q(x) and a remainder R(x) that :
| obey the relationship: :
|
I €(x) = D(x)Q(x) + R(x) :
|
: With polynomial degrees: :
| Degrees of: :
: Cx)=n, D@ =k Q(x) =n-k, R(x) <k :
: In analogy with integer modular arithmetic, we can write: :
| |
: R(x) = €C(x) mod D(x) :
| If R(x) = 0, than we can say D(x) divides €(x) or D(x) is a divisor of €(x) :
I |
| |
| |
| |
| |
| |
| |

Safwan El Assad



AES Arithmetic
Example of polynomials division over GF(2)

x12+ X0+ X+  +xt+ 2+ 1 | x4+ x+1
x124 x7+x°
x10 + x5 + x4 x6  +xt+ x
x"+ x%+ x
R(x) = x5+ x+1

Safwan El Assad 29



AES Arithmetic
Modular Polynomial Arithmetic

Multiplication in GF(28)
Let A(x), B(x) € GF(2®) and let P(x) = x® + x* + x> + x + 1 or {01} {1b} in
hexadecimal notation, be the irreducible polynomial or prime polynomial
The multiplication of the two polynomials A(x), B(x) is performed as:

C(x) = A(x) x B(x) mod P(x), C(x) € GF(2®)
This means that if the degree of C(x) is greater than 7, then C(x) is reduced
modulo P(x) of degree 8. The remainder is expressed as: R(x) = C(x) mod P(x)

x12 4+ x104 x% + x4t + 2+ 1 |28+ x4+ + x+1
x124 x3+x7 x3 + xt
210 + x0+x° + 3 +x? x* +x%+ 1
x8+ 2+ 3+ x+1
R(x) =x"+ x* + x

Safwan El Assad 30



AES Arithmetic
Remark:
There is no simple XOR operation that will accomplish multiplication in GF(2¥).
However a straightforward implemented technigue, based on the following
observation is available:
x¥ mod P(x) = |[P(x) — x¥] in AES: xXBmod P(x) =x*+x3+x+1 (1)
Consider:
A(x) = a7x7 + agx® + -+ ayx + ayg € GF(2?)
x % A(%) = (ax® + agx” + - + a1 X% + agx) mod P(x)
If a; = 0, then no need for reduction.
If a; = 1, then reduction modulo P(x) is achieved using Eq (1):
x X A(X) = (agx” + -+ a2 + agx) +x* + x> + x + 1

(ag, a5, a4, a3, @y, @y, @y, 0) if a;=0

So, xxA(x)= {(aﬁ, as, @y, @3, Gz, @y, @0, 0) © (00011011) if ay=1 2

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit

left shift followed by a conditional bitwise XOR with (00011011).
Safwan El Assad 31



AES Arithmetic

Example:
AX)=xT+x+x*+1

xx A(x) = (x® + 2% + 2° + x ) mod P(x)

2xA@) =+ +x)+(x*+x3 +x+1)=a0+ 2 +xt + 23 +1

Indeed:
|
B+ x4+ + X x8 + xr+x3+ x+1 |
x3+ X+ 3+ x+1 .
1 !
R(x) = x0+x5+x*+ 23 + 1 :
|

Multiplication by a higher power of xcan be achieved by repeated Eq (2). By

adding intermediate results, multiplication by any constant in GF(2%) can be

achieved.

Safwan El Assad 32



AES Arithmetic
Inversion in GF(28)

By using the Extended Euclidean Algorithm, the inverse A~' of a nonzero

element A € GF(22%) is defined by:
A~ 1(x) x A(x) = 1 mod P(x)
The element “0” of the field doesn't have an inverse, however in the

multiplicative inverse, the input value ‘O’ is mapped to the output value ‘0’.

For small fields order or cardinality of a field < 2'® elements, Lookup tables
which contain the precomputed inverses of all field are often used. The
following table shows the values of the multiplication inverse in GF(28) for
bytes (xy).

Note that the table below doesn’t contain the S-box of AES.

Indeed, the S-box does not have any fixed points, i.e., there are not any input

values A4; such that $(4;) = 4;, even for the input value ‘0’.
Safwan El Assad 33



Inversion in GF(28)

AES Arithmetic

Multiplication inverse table in GF(28) for bytes {xy}

Hex

y

0

1

2

3

4

5

6

7

8

9

a

b

C

00

01

8d

f6

cb

52

7b

di

e8

Af

29

cO

b0

el

e5

c/

74

b4

aa

4b

99

2b

60

5f

58

3f

fd

CcC

ff

40

ee

b2

3a

6e

5a

f1

55

4d

a8

c9

cl

Oa

98

15

30

44

a2

c2

2C

45

92

6c

f3

39

66

42

f2

35

20

6f

77

bb

59

19

1d

fe

37

67

2d

31

f5

69

ar

64

ab

13

54

25

e9

09

ed

SC

05

ca

4c

24

87

bf

18

3e

22

fO

51

ec

61

17

16

5e

af

d3

49

a6

36

43

f4

47

91

df

33

93

21

3b

79

b7

97

85

10

b5

ba

3C

b6

70

do

06

al

fa

81

82

83

/e

7f

80

96

73

be

56

9b

e

95

d9

f7

02

b9

a4

de

b6a

32

6d

d8

8a

84

72

2a

14

of

88

f9

dc

89

9a

fb

/c

2e

c3

8f

b8

65

48

26

c8

12

4a

ce

e’

d2

62

Oc

el

1f

ef

11

75

78

71

as

8e

76

3d

bd

bc

86

S7

Ob

28

2f

a3

da

d4

e4

of

a9

27

53

04

1b

fc

ac

e6

7a

07

ae

63

c5

db

e2

ea

94

8b

c4

d5

9d

f8

90

6b

bl

od

d6

eb

c6

Oe

cf

ad

08

e

d7

e3

5d

50

le

b3

X
“—lo|lalo|lo|y|o|lo|N|o|a| M w|N[R|O

Sb

23

38

34

68

46

03

8c

dd

9c

7d

a0

cd

la

41

1c

Example: A(x) = x7 + 2% + x* + 1 = (10110001) = {b1} = {xy}
The inverse A 1(x) is {e0} = (11100000) = x7 + x% + x°. This can be verified by:

Safwan El Assad

x7+2% + 2* + 1) X (x7+x° + 2°) = 1 mod P(x)
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Mathematical description of the AES S-Box

AES S-Box is built by applying two mathematical transformation.

1. Map each byte A € GF(28) to its multiplicative inverse B = A™1,

2. Apply the affine transformation to each bit of each byte B

d; = bi®b(i+4) mod 8$b(i+5) mod 8®b(i+6) mod 8®b(i+7) mod 8DC;
Where c; is the ith bit of byte € = (01100011) = {63}

A
_—

Multiplicative

inverse in GF(23)

B=A1

>

Affine D =5(A)
—_—

mapping

The AES standard depict the affine transformation in matrix form as follows:

(=8

o
C OO =
© O

Safwan El Assad
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0

—_ e e e OO

_ O OO =

—_ e OO O

_ O OO

R OOOR KRR

ORROOORK

Example:
A =(10110001) = {b1}
From multiplicative inverse:
B=A4"1={e0}
From affine mapping:
D =S(A) = {c8}

For A = (00000000) = {00}

D =5(A) ={63} .



AES S-Box

Note:
The Multiplicative inverse operation in GF(2®) is highly nonlinear, this provides

optimum protection against known cryptanalytic attacks.
The affine mapping destroys the algebraic structure of the Galois field, this

allows to prevent attacks that would exploit the finite field inversion.
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AES Mix Columns transformation

Mix Columns layer is defined by the following matrixes multiplication on state

(02 03 01 01]
01 02 03 01
01 01 02 03

103 01 01 02]

Mix Column transformation operates on each column j of state individually and

can be expressed as:

(50,0
$1,0
$2.0

1530

S0,1
S1,1
S21
53,1

S0,2
51,2
S2,2
53,2

$03]

S$1,3
$23

$33]

- 7/ 14 14 !/ =
$S00 S01 S02 So03
14 14 14 !/
$10 S11 S12 S13
! ! ! !
$20 S21 S22 S23

! ! ! !
[S30 $31 S32 S33]

s'0j = ({02} x {s0,;})®({03} x {s1,})®({01} X {s,,})®({01} x {s5,})
s'1j = ({01} x {50,,})®({02} x {51,,})D({03} x {52,,})D({01} X {53,})
s'2; = ({01} x {50, ) ({01} x {51,;})B({02} x {52,})B({03} x {53,})
s'3j = ({03} x {50, })®({01} x {51,;})®({01} x {52,,})D({02} X {53,})

The additions and multiplications are performed in GF(22).

Mix Columns is the major diffusion element. Indeed, every input byte influences
4 output bytes. The combination of the Shift Rows and Mix Columns layer
makes it possible that after only three rounds every byte of the state matrix

depends on all 16 plaintext bytes.

In AES, encryption is more important than decryption for 2 reasons:
1. For the CTR, OFB and CFB cipher modes, only Encryption is used.
2. AES can be used to construct a message authentication code, and for this,

only encryption is used.

Safwan El Assad
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AES Mix Columns transformation

Example of Mix Columns for the first column:

‘02 03 01 011 T[d4l1 T041 Theconstants {01}, {02} or {03} are chosen for
01 02 03 01 bf 66| their efficient polynomial multiplication, for e.g.
01 01 02 03 5d 81| Multiplication by {02} is achieved by a left shift
03 01 01 021 130l les| byonebit,and a modular reduction with P(x)

To verify the Mix Columns operation on the first column, we need to show that:

(102} x {d4})® ({03} x {bf})®({01} x {5d})D({01} x {30}) = {04}
(101} x {d4})®({02} x {bf})®({03} x {5d})D({01} x {30}) = {66}
(101} x {d4})® ({01} x {bf}D®({02} x {5d})B({03} x {30}) = {81}
(103} x {d4})®(101} x {bf})B({01} x {5d})D({02} x {30}) = {e5}

Recall that, in GF(2®) polynomial:
{01} = {00000001} = 1; {02} = {00000010} = x; {03} = {00000011} = (x + 1)
(as, a5, ay, a3, @y, @y, @y, 0) if a;=0

%% AGx) = {(ﬂa,. as, ay, Az, Az, Ay, Ay, 0)®(00011011) if a; =1
(x+1)xAx) =xxA(x) DA(x)

{02} x {d4} = (00000010) x (11010100) = (10101000) & (00011011) = (10110011)

{03} x {bf} =(00000011) x (10111111) = (01111110) @ (00011011)é(10111111)
= (11011010)

{01} x {5d} = (00000001) x (01011101) = (01011101)

{01} x {30} = (00000001) x (00110000) = (00110000)

So: (10110011) & (11011010) & (01011101) & (00110000) = (00000100) = {04}
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Euclidian algorithm and Extended Euclidean algorithm

Modular Arithmetic Mathematical reminder

Modulo operation
Leta,rmeZandm > 0.We can write:

]
amodm=a - I;]xm=r=»a= gxXm+re a=rmoedm
a
With0 <r<m;q = |=]

m
Where: m, r, q are called the modulus, the reminder, the quotient and |z] is the
largest integer less than or equal to z (the floor function).
Example: 42mod 9 =42 — |£|x9=42-4Xx9=6=42=6mod9

Multiplication Inverse

Let @ € Z, the inverse a™! (if exist) is defined such that:
axal=1modm

An element a € Z has a multiplicative inverse a1 if and only if
gcd(aam) =1

Where gcd is the greatest common divisor, i.e, the largest integer that divides
both @ and m. Then a and m are said to be relatively prime or coprime 29



Finding the Greatest Common Divisor by the Euclidean algorithm

The gcd of two positive integers ro and ry gcd(ry, 1) With ry > rq

can be calculated for small numbers, by factoring both numbers and finding the highest
common factor. Example:

Letrg =84 =2%Xx2X3X7; r1=30=2%Xx3x%X5

The gcd is the product of all common prime factors: gcd(84,30) =2x3 =6

For large numbers (bit length from 1024 to 3076 as used in public-key
algorithms), factoring often is not efficient and then it is necessary to use an
efficient algorithm such the Euclidean algorithm which is based on the
following observation:

ged(rg,rq) = ng((To —T1), T1) (3)

Indeed, let gcd(ry, 1) = g. Since, g divides both r, and r{, we can write:
ro=gxXxandry; = g Xy, where x >y, and x and y are coprime integers,
l.e, they do not have common factors, also (x — y) and y are coprime integers:
ged(ro,11) = ged((rg —11),71) = ged(gx (x —y),gxy) =g
ged(x,y) = ged((x —y),y) =1

Safwan El Assad
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Finding the Greatest Common Divisor by the Euclidean algorithm

Let verify this property with the numbers from the previous example: ry = 84, r;= 30
To—1T1=54=2X3%x3%Xx3;, r1=30=2%Xx3X%5
= gcd(54,30) =2 X3 =6 =gcd(84,30)

Also, as: ry = 6 X 14, r{= 6 X 5, then gcd(14,5) = gcd(9,5) = 1
It is follows immediately that, equation (3) can be applied iteratively:

ged(rg, ry) = ged((rg —r1),11) = ged((ro — 2ry),1y) = - = ged((ro — qry). 1)
As long as (ro — qry) > 0. Then:

gcd(rg, 1) = ged((rg — qry),ry) = ged(ro mod ry, 1) = ged(ry, romodry) (4)
Because ro mod rq{ <14
Equation (4) is applied recursively until we obtain finally gecd(r,,,0) = r,,.

Since each iteration preserves the gcd of the previous iteration step, it turns out that
this final gcd is the gcd of the original problem, i.e:

gcd(rg,ry) = =gcd(r,,0) =1, (5)

Safwan El Assad
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Finding the Greatest Common Divisor by the Euclidean algorithm

Let first show the system of equations calculating the ged(rg,r4) Of two given positive

integerS ro and rq W|th ro > rq.

¥ — —
Ti-pgmodri_y =Tz — l‘ ZJ‘Xri—l =T =72 = Qi-1 X Vi1 T 7,

With 0 <r; <r;_y and @q;_ 1—[

Fi-1

I Ti2=qQiXTiq+ry 07 <riy
2 Te=Q1Xry+71r; 0<r,<ny
3 Try=Qq2XTr;+1r3 0<r3<nr,
4 1ry=q3Xr3+71, 0<r,<r;

n Th-2 =Qu-1 XTp-1+Trp 0<r,<r,.,

N+l rp1=q@uXr,+0

ged(rg,ry) =1,

Safwan El Assad

Example:

gcd(rg,rq) = gcd(973,301)
973 =3%x301+70 0<70<301
301 =4%x70+ 21 0<21<70
70=3%x21+7 0<7<21
21=3x7+0
gcd(973,301) =7

gcd(973,301) = gcd(301, 70)
gcd(301,70) = ged(70,21)
gcd(70,21) = gecd(21,7)
gcd(21,7) = ged(7,0) =7
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Euclid’s algorithm

Euclidean Algorithm

Input: positive integers ro and r; withrg > ny
Output: gcd(rg,1r4)
Initialization: i = 1
Algorithm:
DO
i=i+1

ri=riamodr;_,
WHILE1; # 0
RETURN

gcd(rg,ny) =11
Note that the algorithm terminates if a remainder with the value r; = 0 is computed.

The number of needed iterations is close to the number of digits of the input
operands. That means, for instance, that the number of iterations of a ged involving
1024-bit numbers is 1024.

Safwan El Assad
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Extended Euclidean algorithm

The extended Euclidean algorithm allows us to compute modular inverses, which is
of major importance in asymmetric and symmetric encryption. It not only calculate the
ged but also two additional integers s and ¢ that verify the following equation:

ged(rg,n)) =sXrg+txn (6)

The idea is to use the Euclidean algorithm, but we express the current remainder r; in
every iteration as a linear combination of the form:

=85 Xrg+tixn (7)
In the last iteration we obtain:
m=gcd(yn) =sp Xrg+t, X1 =sXrp+txn (8)
This means that the last coefficients s, and t,, are the coefficients s and t of Eq (6)

Let consider the extended Euclidean algorithm with the same values as in the
previous example, ro = 973 and r; = 301.

In the following table, in every iteration, on the left-hand side we compute the
Euclidean algorithm and the integer quotient g;_y and on the right-hand side we
compute the coefficients s; and t;, verifying Eq (7).

Safwan El Assad
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Extended Euclidean algorithm

i Ti2=Qi XTiq+ry 0SS <riy ri=[si] xro+[t;] x1ry
2 To=q1Xry+17; 0<r,<n ro = [s2] X 1rg + [t2] X1y
3 ry=qyXr;+r;3 0<r;<nr, r3 = [s3] X rg + [t3] X1y
4 rya=q3Xrz3+r, O0<r,<r; e = [S4] X 1o + [tg] X 1y
N T2 = qu-1 XTp1 + Ty 0<1Ty, <1y, Tn = [Sal X7 + [tp] X7y

N+l rp1=quXr,+0

We will now derive recursive formulae for computing [s;| and [t;] in every iteration.
In the iteration i we first compute g;_; and the new reminder r; from r;_; and r;_,.
Ti=Ti-2~ qi-1 XTi-1 (9)
In the previous iterations (i — 2) and (i — 1) we computed the values:
Ti2 = [Si—2]l X 1o + [ti2] X1y
Tiq = [Sic1] X 1o + [tiq] X1y

In order to compute r; as a linear combination of r, and r4, we substitute the previous
values r;_, and r;_4 in Eq (9), we obtain:

ri = {[si—2] X 1o + [ti—2] X 71} — qi—q X {[Si=1] X 1o + [ti=1] X 14}

ri = {[si-2] = Qi-1 X [Si-1]} X o + {[ti-2] — qi-1 X [ti-1]} X 7y = [85i] X v + [ti] X 1y
Safwan El Assad 45



Extended Euclidean algorithm

From the later equation we deduce the recursive equations:
[si] = [si-2] — qi-1 X [Si-1]
[t:] = [ti-2] — qi—1 X [ti-4]
These equations are valid for i = 2 and the initial values are:
$0=1,51=0,¢=0,¢;, = 1.

Safwan El Assad

(10)
(11)
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AES Decryption

Safwan El Assad
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Chaos-based Cryptography

Safwan El Assad
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What is chaos?

Chaos is the art of forming complex from simple
= Chaos can be generated by a non-linear dynamical system
= Edward Lorenz a meteorologist trying to predict the weather

= Butterfly Effect (1960): If a butterfly flaps its wings in Paris,
It could change the weather in New York.

'' e -

* Lorenz map (1963): 3-D chaotic map

Safwan El Assad
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Dynamical non-linear systems can generate chaos
= Discrete-time dynamical system: X(n)=F[X(n-1)]
Recursion relations, iterated maps or simply maps
= Continuous-time dynamical system: X(t)=F[X(t)]

Flow: continuous evolution of field lines in the phase space
@ -
f
¢ (

Application: S. Smale horseshoe map
Horseshoe map is a class of chaotic
maps, it is defined geometrically by:

- squishing the square,

- stretching the result into a long strip,

- folding the strip into the shape of a
horseshoe Attractor: Signature & Beauty of dynamical chaos
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Chaotic dynamical System

= A chaotic dynamical system is:
« Deterministic, not random and unpredictable

Means that the system has no random or noisy inputs. The irregular behaviour

arises from the system’s nonlinearity.
« Aperiodic long term behaviour for continuous-time dynamical system

Means that there should be trajectories which do not settle down to fixed points,

periodic orbits or quasi-periodic orbits as t —<,
« Periodic behaviour for discrete-time dynamical system
« Sensitive to initial conditions and initial parameters (Secret Key)
Means that nearby trajectories separate exponentially fast, which means the

system has positive Lyapunov exponent.
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Chaotic dynamical System

Low-dimensional chaotic dynamical system X(n) = F[X(n — 1)] is capable of
complex and unpredictable behavior
The set of points: {X(0),X(1) = F[X(0)],---,X(k) = FIX(k—1)]}

Is called a trajectory (or orbit)

X (k)
AX (0) = X (0) - X, (0)

X (0) X(1)

AX(K)|~[AX (Q)fxe™| o )

X,(0)

" X1(K)
Lyapunov exponent A measure the divergence rate between orbits

Safwan El Assad
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Chaotic dynamical System
Imperfect knowledge of present, so (practically) no prediction of future

Dense
Infinite number of trajectories in finite region of phase space

Attractor: set of orbits to which the system approaches from any initial

state (within the attractor basin)




Why using chaos to secure information?

Useful properties of chaos in secure information

= Easy to generate: simple discrete-time dynamical system is

capable to generate a complex and random like behavior
sequences : X(n)=F[X(n-1)]

= Chaotic signal is deterministic, not random (we can
regenerate it) and it has a broadband spectrum

= Chaotic signal is extremely difficult to predict because of
the high sensitivity to the secret key

= Very large number of orbits in finite region of phase space

54
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Examples of systems exhibiting chaos
= Biological Systems

Prey-predator models: Logistic map

Models describing the interaction between predators and their prey to investigate
species population year on year.

Human physiology

- Brain: normal brain activity is thought to be chaotic.

- Heart: normal heart activity is more or less periodic but has variability thought to be
chaotic. Fibrillation (loss of stability of the heart muscle) is thought to be chaotic

= Laser instabilities

= \Weather systems

Models of the weather including convection, viscous effects and temperature can
produce chaotic results. First shown by Edward Lorenz in 1963.

Long term prediction is impossible since the initial state is not known exactly.

=  Turbulence

Experiments and modeling show that turbulence in fluid systems is a chaotic
phenomenon
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Some known chaotic maps used in
chaos-based cryptography

» Chaotic maps used as PRNG:
1-D: Logistic, PWLCM, Skew Tent
3-D: Lorenz, Chebyshev

4-D: Chebyshev polynomial, Lorenz Hyperchaos, Chen
Hyperchaos, Qi Hyperchaos.

= Chaotic maps used as permutation layer :

2-D : Cat, Standard, and Baker map

= Chaotic map used as nonlinear substitution layer :
1-D : Skew Tent

« Effects of the finite precision N

Safwan El Assad
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Presentation of some 1-D chaotic generators

= Logistic Map:
Logistic map is a prey-predator model for predicting the population of a
species year on year. Also used in many secure communication systems

Population from generation n-1 to generation n is given by:

0<r<4

x(n) = flx(n - D] =rxx(n—-1) x[1-x(n—-1)] with {0 <x(n-1)<1

Fixed points: x(n) = flx(n— 1] =x(n—-1) = ll - %]

= Discrete Logistic map: quantized on N-bit (N = 32 bits)

( _ N _ _
A 1)[22 N_ZX(n 2l if Xn—1) #[3x2N"2-1,  2N-1]
X =" guav2 g if X(n—-1)=3x2""?
\ 2N -1 if X(n—1)=2N"1

With: r =4 and 0 < X(n — 1) < 2V, [Z] means floor (2), biggest integer no bigger than Z

r. control or growth parameter; x(n),X(n):dynamical variables
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Logistic map

x(n) - o oA

as|

5 o7
r=25 - ——

_.-205

Bifurcation Diagram of the Logistic Map

' Fixed points region

0Oand 1

n 03 |
Three fixed points:
1
x(n) = flxtn— D] = x(n — 1) = [1_;]
1-2=|1-2|=06
xp(n) = rl = 25|~V

4

r

e ———————————— e ———al
26 28 3 32 34 36 a8

Growth Parameter r

Safwan El Assad
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Logistic map

Bilurcation Diagram of the Logistic Map

. Feigenbaum Bifurcation

o
o
-~

r=3.3

Population

If initial condition is changed, the

sequence always converge to the

same cycle of period-2, butwitha o .\
Growth Parameter r

different rate _ _ N _
Bifurcations mark the transition from order into chaos
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Logistic map

r=35
3.544090 — period of 8
3.564407 — period of 16
3.568759 — period of 32
3.569692 — period of 64
3.569946 — period doubling ends

2 22

r=>r.=3.56996 — Chaos emerges

Bifurcation Diagram of the Logistic Map

24 26 28 3 a2 34 36 38
Growth Parameter r

The attractor branches into two,
then four, then eight and so on

4

Safwan El Assad
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Logistic map

~ 4.0 chaos reigns

looks like a mess.

interspersed with cl
“‘windows”.
Existence of period

implies chaos

3.828427 — small period tripling window opens up

~ 3.855 — period tripling cascade ends and chaos resu

The sequence follows a

geometric progression, but soon o

Messy regions are cyclically

-3 windows Al

~ 3.569946 — period doubling region ends and chaos begins

Bifurcation Diagram of the Logistic Map

v

09}

ear "

2 22 24 26 28 3 32 34 36 38
Growth Parameter r

4

Chaos does not necessarily imply disorder
Chaos is the “randomness” in predicting the next iteration

Safwan El Assad
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0.8}

0.6}

x(n)

0.4

0.27¢

Bifurcation Diagram

><109

1 2 3 4
X(@-1)  x10°
Strange Attractor: cobweb trajectory
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Lyapunov Exponent

pTe 109
4 L
3 T *h
=
\%2 i
1 L
0 200 400
n
Discrete Variation
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= Discrete Skew Tent Map

( _
Pnyl ifo<X(n—-1)<P

X[n]=F[X(n—1),P] =+

ifP<X(n-1) <2V

N 2V — X(n - 1)]‘

2N —p

L 2V -1 otherwise
1<X(n-1)<2VN -1, 1 < P < 2V — 1: Control parameter, N = 32 bits

;I‘-\ I
4 ;_f i \
o SN
3r 3 [ ‘\
—2.5" / N
= \,
< 2F : \
1.5+ \\
1+ 7 \'\_‘
i N,
0.5 \
1 P 2 3 4
X(n-1) <107
Mapping

Attractor

Better cryptographic performances than the Logistic map

Safwan El Assad Histogram is more uniform. Antagonist characteristics with the PWLCM 63



= Discrete PWLCM Map

( X(n—-1
2N><¥‘ if0<X(n—-1)<P
[ X(n—1) — P] . _
2N % N1 p ifP<X(n-1) <2VN-1
X[n] = 2V —P - X(n—1)] -
2N x ST p if2N"1<X(n-1)<2V¥V-P
2V —X(n—-1
sz[ 15 )]‘ if2N—-pP<X(n-1) <2V
. 2N -1 otherwise
1<X(n-1)<2V¥-1, 1<P<2V1_1:Control parameter, N = 32 bits
102 . . : 45 » 10" i
AN — =
RN AR ==
B IR AR = =
N Ay = i ===
| oo ==
1.5} |I N '\- Il - __-_— =
X(ri_l) 0 0 1 _xpms 4 x]{;
Mapping Attractor
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Discrete 3-D Chebyshev map

( 2N-1 if X(n)=0 or 2V or 2V-1
X(n) = _ 1) — 2N-1)°
()= 272N+2 4x [X(n —1) - 2] + 2N-1 otherwise
\ —3 x 22N-Z x |[X(n—1) — 2N-1]
1<X(n-1)<2VN-1, N = 32 bits

. x10° . x10°
D T T T D

4=
=
'S
=

nw &

W

Xtntl)

[
N o N ‘v

0 50 100 150 200 250 300

n

Xt(n) w109

Discrete Variation Mapping

Attractor
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» Linear Feedback Shift Register (LSFR)
Primitive polynomial
QM) =x32+x*24+x24+x+1, 1<Qm)<2V-1, 1=2%2-1

Galois structure

LT 11 ]

Dz1|D3zg| - D22 PDDM Dol .. D>

45 x10° 45
4t 4t ‘
35} 35| A ‘
| | al|
Al |
-2 11l | o 2r 2 :
1.5 15t :
1 1
0.5 0sr
0 0
0 50 100 150 200 250 300 0 1 2 3 4 5 3
n Q) x10° Q(n)
Discrete Variation Mapping Attractor
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Discrete 3-D Chebyshev map coupled with an LFSR

Q(n)
X(n—1) F[X(n—-1)] l'
45 210° . . . _ 45 2105 . . . as 210
S A G L S g
“ SRR =
35 | 5 Lrimmn s a"" ¥ 35
3 | T { 'f R 3
g i g2
= 2 - =)
15 | “ 1.5
1 1
05 0.5
%0 0 100 150 200 250 300 % ! 2 3 4 s

n Xti(n) %107

» Random mapping vs known mapping of a Skew Tent, PWLCM, Logistic, and a 3-D
Chebyshev map

» The technique of coupling a chaotic card with an LFSR improves the cryptographic
properties of this chaotic map.
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= Statistical analysis of chaotic maps: Uniformity and NIST test

1) Uniformity test: Histogram and chi-square y? test

* Visually uniform histogram
Nc-1

| S 2 2 ) (0; — E;)*
« Chi-squared distribution © yg, < xih(Ne — 1, @) Xex = Z 5
i=0 :

M. is the number of classes (sub-intervals) or degrees of freedom, chosen here N.= 7000

0;is the number of observed (calculated) samples in the i-th class

E;is the expected number of samples in a uniform distribution, E; = N;/N,

N, is the number of generated samples of 32 bits each, chosen here N, = 3,125,000 = 108 bits

a is the significance level or probability level, chosen here a = 0.05

Uniformity test for the 3-D Chebyshev map and the 3-D Chebyshev map with LFSR

00 3500 — ‘ 3-D Chebyshev 3-D Chebyshev
o0 * map map with LFSR
I ¥,  41,865KO 999.48 OK

i X2 1073.64 1073.64

0 1 2 3 4 5 0 1 2 3 4 5
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2) NIST test

For all experiments, we generate 100 different sequences of 3,125,100 32-bit samples using 100
random secret keys. But we only used 3,125,000 samples per sequence (i.e. 108 bits). The first
100 samples generated are produced by the system internally but are not used (to deviate from
transitional regime).

Nist test consists of a battery of 188 tests and sub-tests, globally 15 different tests, to conclude
regarding the randomness or non-randomness of binary sequences.

Nist test uses as input a sequence S of n = 10° bits, then divides them to m binary sequences S,
k = 1, m (chosen here m=100).

For each test, a set of m P_values is produced (based on the standard normal or chi-square as
references distributions).

Frequency | Block Frequency Linear Complexity
(test 1) (test 2) (test 15)

Pl 15
P2’1 P2’2 Iz Pz' 15
P Pm 2 Pm’ 15
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A sequence passes a test (the sequence appears to be random) whenever the P_values > «,
where «a is the level of significance of the test. The value of a is set for all the tests.

For a fixed a, a certain percentage of m P_values are expected to indicate failure. Indeed, an
a = 0.01, indicates that 1 % of the m sequences are expected to fail.

* AP_value = a = 0.01, would mean that the sequence would be random with a confidence of
(1-a) = 99 %.

* A P_value < a = 0.01, would mean that the conclusion was that the sequence is non-
random with a confidence of (1- a) = 99 %.

Remark:
* The minimum pass rate for each statistical test, with the exception of the 8 Random Excursion
tests and the 18 Random Excursion Variant tests, is approximately = 0.960150.

* The minimum pass rate for the 8 Random Excursion tests and the 18 Random Excursion

Variant tests is approximately 0.952091. These tests are applicable only to 62 sequences
instead of 100 sequences.
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Interpretation of empirical results:

» The distribution of P_values to check for uniformity

= The examination of the Proportion of sequences that pass a statistical test

* Final Analysis Report

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

(18)

0o.1 .2 .3 .4 .5 .6 .7 .8 .9 1 <-——--- P-values
cCl C2 C3 C4 C5 Ce C7 C8 C9 Cl0 P-VALUE, PROPORTION STATISTICAL TEST
F, F, F, F, F, F, F, F, F, F,<-———-— Frequency of P-values
13 8 12 6 10 10 10 10 10 11 {O.946308: l'0.9600 : frequency
4 6 13 12 12 15 11 12 4 11 :0.137282| :0.9800 I block-frequency
15 10 8 8 9 13 8 9 8 12 1 0.7791881 10.9800 : cumulative-sums
9 10 6 11 9 15 8 6 9 17 IO.249284: :0.9900 | runs
12 9 10 14 5 4 15 8 9 14 :0.171867| 1 0.9900 ' longest-run
14 11 6 12 8 6 13 3 21 6 10.0027581 11.0000 : rank
12 13 10 13 13 6 10 7 7 9 10.678686 ' 10.9900  fft
9 7 g8 11 13 9 9 14 12 8 :0.834308: :0.9900 I nonperiodic-templates (148)
12 11 11 17 11 9 9 7 7 6 70.4190211 10.9900 : overlapping-templates
4 17 10 12 9 10 4 12 13 9 10.122325" 11,0000 | universal
8 10 10 10 10 12 9 14 8 9 :0.964295: :0.9900 I approximate entropy
3 2 11 6 7 8 8 4 8 5,0.2535511 10.9677 : random-excursions (8)
6 2 7 8 6 11 6 8 5 310.3504851 10.9677 | random-excursions-variant
8 10 10 6 10 12 10 14 9 11 :0.897763: :0.9900 I serial
19 9 8 7 7 13 6 9 7 15 IO.O58984/| 10.9900 : linear-complexity
N )
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NIST test for the 3-D Chebyshev map without and with LFSR

NIST st

Frequency
Block-frequency
Cumulative-sums (2)
Runs

Longest-run

Rank

FFT
Non-periodic-templates (148)
Overlapping-templates
Universal

Approximate Entropy
Random-excursions (8)

Random-excursions-variant
(18)

Serial (2)

Linear-complexity

0.000
0.000
0.000
0.035
0.000
0.115
0.000
0.000
0.000
0.000
0.000
0.004
0.248

0.000
0.760

100.000
0.000
0.000
100.000
0.000
66.507
0.000
0.000
0.000
96.115
99.775

0.000
99.000

100

98

100

99

100

99

100
99.020
100

98

100
99.256
99.592

99
100

3-D Chebyshev

80

60 -

40 -

3-D Chebyshev | 3-D Chebyshev 100 o mrrmme PRI
With LSFR S R S

Proo %
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200

3-D Chebyshev with LFSR

Prop vs Test

100 promme sme sswm oo semesn wve mese o
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70
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0
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= NIST test and uniformity test for studied chaotic maps

= Logistic = SkewTent = PWLCM = LFSR = 3-D Chebyshev

= 3D with LFSR
Chebyshev v

s Tes Prop vs Test s Tes! Prop vs Test P s Test Prop vs Test
100 = ;—-.—.—«-—-,p-';‘»'!‘!—‘_.:-.-T Lf-ln i 100 -+ ey e, T p— .Prf’p “:“"" S R LhhL o e 100 - e s 100 = 5
. ’ : ; ‘ o0 i s ; S : ‘ {
%0 s 4 gy 80 . i . 80
' il 90 -
v ' 80+ ‘ -
60 - . 60 - 60 - r : . 60 - 85
: 70
80
40 40- 60 | 0 40- 75
L j 50- ! ‘ 70
20 5% i 20 20 20
i @ 40 i 065
o st 2 0 30 0 et : : 0 60 : -
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 30 100 150 200 0 30 100 150 200

00 3500 3500
600
500
E
300
200
100

0
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= Computing performance

o Computing by software: C language
Computer: Intel ® Core™ 5-4300M, CPU @ 2.6 GHz and memory 15.6 GB
Operating system: Ubuntu 14.04 Linux, using GNU GCC compiler

) ) Generated data size (Mbits)
Bit rate(Mbit/s) = - _ or Throughput (Mbps)
Average generation time (second)

CPU speed (Hz)
Bit rate(Byte/s)

NCpB = : Number of needed Cycles to generate one Byte

NCpB: allows to compare the computing performance of different systems working
on different platforms

— SkewTent |__PWLCM

Generation time (us) 317
Bit rate (Mbps) 3144 2368 1941
NCpB 3 8 10
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o Computing by hardware: VHDL description & FPGA

All studied chaotic systems were coded in VHDL using the Xilinx Vivado design suite (V.2017.2)
and were implemented on a Xilinx XC7Z020 PYNQ-Z2 (7z020clg400-1) FPGA hardware platform.

| PROJECT MANAGER - SkewTent

Design entry w
Sources 2 BB X top_skewtent. VHD J *

S =L . 1 et b
~ Design Sources (1 tb_top_skewte (Xsim)
~ @hi top_skewtent(arch) (top_ §n5eunentmd) (1)J v R 4 | |
@ inst_skewtent : skewtent(ril) (skewtentvhd [ :
~ Constraints (1 S?;{:i:lg Check syntaxe
- constrs_1 (1
% skewtentxdc Optimize Design
v Simulation Sources (1
2 sim_1 (1 .

¥H inst_skewtent: skewtenti(rtl) (skew

A 4 \ 4 y
file Translate
~ &ide tb_top_skewtent(arch) (ib_pcngvhd) (1 Design Implementation Map
~ @R inst_pcng : top_skewtentiarch) (top_s# Place & Route
< >

- Timing
Hierarchy Libraries

Compile Order M Similation
Source File Properties 2>

—EX %18
h 4 v

§ kewtent.bit

“h top_skewtentvhd ¢ o Configuration Bitstream 2kz Z:t t(:l
Generation -

(Keystream)

~

v Enabled

Location: C:/Users/Fethi Dridi/lDesktop/Test h

< >

General Properties

The programmable logic of the ZYNQ XC7Z020 provides 13,300 logic slices, each with four 6-input
LUTs and 8 flip-flops, 630 KB block RAM, 220 DSP slices, and on-chip Xilinx analog-to-digital converter
(XADC). It also has an external 125 MHz reference clock (PL CLK): PL — F = 125 MHz, PL — T = 8ns.
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o Hardware metrics

Maximum Frequency (MHz)

Max_Freq =

Ti—wnsi MH2)
Throughput (Mbps)

Throughput = N X Max_Freq (Mbps)

Efficiency (Mbps/Slices)

Throughput
Efficiency = gup

Slices (Mbps/Slices)

Ti is the target clock period (ns) used during the implementation run ”i” and WNSi is
the Worst Negative Slack (ns) of the target clock used during the implementation run

NN

i” and must be positive, very close to zero.

WNSI is the difference between the target clock period and the path delay between a

pair of registers. The longest path delay i = Ti — WNSi determines the maximum
frequency at which the design can operate.
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o Hardware metrics

Logistic SkewTent PWLCM 3-D LFSR 3-D Ch
Chebyshev with LFSR
LUTs 77 /0.14 % 2,830 7,374 268 /0.05%  2/0.01% 315 /0.59 %
/5.32 % /13.86 %
Resources Area FFs 49 /0.05 % 57 /0.05 % 63 47 /0.04 % 62 /0.06% 78 /0.07 %
used /0.06 %
Slices  [33/025%  853/641% 2171  73/055%  19/014% 98/0.74%
I /16.32 %
N o o o o o e o e e e e o e e R e M e e e M M M M e M e e M e e e e e e e
DSPs 4 /1.82 % 0/0.00 % 0/0.00 % 12 /5.45 % 0/0.00 % 12 /5.45 %
WNSi (ns) 0.102 0.059 0.287 0.581 5.965 0.278
Ti (ns) 12 28 32 24 8 22.80
Speed Max_Freq (MHz) | 84.04 35.78 31.53 42.70 491.40 44.41
N o o o o e e o e e e e e e e e e R M e e e e e M e M e e e e e e e
Throughput (Mbps) : 2,689.52 1,145.27 1,009.04 1,366.41 15,724.81 1,421.40
N o o o oo - e o e e e o e e e e e e M e M e M e e M e e e e e e e e e o
—_— N
Efficiency (Mbps/Slices) | 81500 1.342 0.464 18.717 827.621 14.504
Power Consumption (W) ,' 0.083 0.070 0.102 0.048 0.118 0.052
N o o o o o o e o mm Em Em Em Em Em Em Em Em Em Em Em M Em Em Em Em Em Em Em Em Em Em Em Em Em Em me e Ew e Em =
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Effects of the finite precision N

= In finite precision N bits with 1-D chaotic map

X(n)=F[X(n-1)], Xn)e[1,2Y-1], n=1,2,--  Notation:X, = X(n)

\Tran5|ent branch of length | |
|

Length of the orbit: o =/+¢ . Cycle of period ¢ |
|

Pseudo-orbit of an integer chaotic values

Maximum length of the orbit : 0,,4, = 2¥ — 1, extremely rare to obtain

Analytical rule of the Average length of the orbit is: A, p;n= [(2 ) ] = 22

Were d is the number of delays of the recursive structure, if exist

Safwan El Assad
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Effects of the finite precision N

Example : N =4 bits, and two |.Cs

= Situation a : 2 different 1.Cs give 2 different cycles

1° 1.C:1=3,c=5
7 —>13—> 6

= Situation b : 2 different 1.Cs give the same cycle c
1°1.C:1=3,c=5 m a
7513 -6 —(9)

2° 1.C:l=2,c=5 2 e @

= Situationc |=1,c=1

12
| Fixed point
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= Observation: for classic 1-D chaotic maps used alone

Advantages:
Simple equation
Easy implementation

Good computing performance

Disadvantages:

Weakness on security
Short size of the secret key
Short periodic orbits

Easily recognized functions

Safwan El Assad
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