
Chaos-based Cryptography Primitives for

Data Security

1Safwan El Assad

Safwan El Assad

https://scholar.google.com/citations?user=69Jk1jQAAAAJ&hl=fr

Polytech Nantes, school of engineering of the Nantes

University – France

IETR Laboratory, UMR CNRS 6164; VAADER team - site of

Nantes

https://scholar.google.com/citations?user=69Jk1jQAAAAJ&hl=fr

Safwan El Assad
2

Today, we all live today in a cyber world, and modern technologies involve fast

communication links, potentially between billions of devices, via complex networks

(satellites, mobile phones, the Internet, Internet of Things, etc.). Thus, the question of

how we protect public communication networks and devices from passive and active

attacks that could threaten public safety (sabotage, espionage, cyber terrorism) and

personal privacy has become one of great importance.

Cryptography and Chaos-based Cryptography

Outline

 Generalities

 Classical cryptography

 AES Algorithm

 Chaos-based data security

 What is chaos? Why using chaos to secure information?

 Some known chaotic maps used in chaos-based security

 Design of efficient stream ciphers based on pseudo random

number generators of chaotic sequences (PRNGs-CS) &

performance evaluation

 Design of efficient chaos-based cryptosystems (block ciphers) and

performance evaluation

3Safwan El Assad

Outline

 Design of efficient chaos-based steganography systems

 Appendix

 Various block cipher modes: Symmetric key algorithms

 Error Propagation : summary of bit errors on decryption

4Safwan El Assad

Cryptography Primitives for Information Security

SteganographyCryptosystems

Invisible Visible

Robust Fragile

Used for tamper

detection Data

integrity

Used in copy

protection

applications

Watermarking

Safwan El Assad

Confidentiality

through obscurity

Confidentiality

through encryption

5

Generalities

Hash

Functions

Message authentication

Digital signatures

Password verification

Intrusion detection &

Virus detection

PRNG

Cryptology

CryptanalysisCryptography

Safwan El Assad 6

Blocs Ciphers

Symmetric

Ciphers

Asymmetric

Ciphers
Protocols

Classical

Cryptanalysis
Implementation

Attacks: SCA, FIA

Social

Engineering

Stream Ciphers

Cryptanalytic Attacks Statistical Attacks

Chaos & Cryptography

Chaos-based Cryptography

Cryptography
Mathematical study

& Techniques for

Secure

Communications

Chaos Theory
Mathematical study

of Nonlinear

Dynamical Systems

Both chaotic map and encryption system are deterministic

Both are unpredictable, if the secret key is not known

Both used iterative transformation

7

8Safwan El Assad

Type of classical Encryption/Decryption algorithms

Encryption

Decryption

Algorithms

Symmetric

Secret-Key

Asymmetric

Public-Key

Block Ciphers

Stream Ciphers

K = KE = KD

Public Private

KD different from KE

Operate on:

a single bit or byte

or N-bit sample

Operate on

a block of bits :

64, 128, 256, ….

Symmetric encryption is # 1000

faster than asymmetric encryption

9

Classical cryptosystems
Symmetric key algorithms

Safwan El Assad

Passive attacks: Pb of Confidentiality

Active attacks: Pb of Data Integrity and Message Authentication

Encryption

Algorithm
Hello

Decryption

Algorithm

µ$@%£

Plaintext P

Ciphertext C

Plaintext P

Hello

Shared Secret Key K

Channel

Principle

Alice Bob

Eve Passive Attacks

Active Attacks

Shared Secret Key K

A. Kerckhoffs 19th century :

Fundamental assumption

in cryptanalysis is that the

secrecy reside entirely in

the key.

10

Model of Symmetric Cryptosystem

Safwan El Assad

Definition: A cryptosystem is a six-tuple 𝒫, 𝒞,𝒦, ℰ, 𝒟,𝒜 , where the following

conditions are satisfied:

1. 𝒫 is a finite set of possile 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠 (𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑝𝑎𝑐𝑒)
2. 𝒞 is a finite set of possible 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑠
3. 𝒦, the 𝑘𝑒𝑦 𝑠𝑝𝑎𝑐𝑒, is a finite set of possible 𝑘𝑒𝑦𝑠
4. For each 𝐾 ∈ 𝒦, there is an 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑟𝑢𝑙𝑒 𝐸 𝐾, 𝑃 ∈

ℰ and a corresponding 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑟𝑢𝑙𝑒 𝐷 𝐾, 𝐶 ∈ 𝒟, such that:

𝐷(𝐾, 𝐸 𝐾, 𝑃) = 𝑃 ∈ 𝒫
With 𝑃 = 𝑝1, 𝑝2, ⋯ , 𝑝𝑛 , 𝐶 = 𝑐1, 𝑐2, ⋯ , 𝑐𝑛 ; 𝐸(𝐾, 𝑝𝑖) = 𝑐𝑖 𝑎𝑛𝑑 𝐷 𝐾, 𝑐𝑖 = 𝑝𝑖 ∈ 𝒜
𝒜 is a finite set (𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑜𝑓 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛). Example: 𝒜 = 0, 1 ; 𝒜 = 0, 1, 2,⋯ , 255
Clearly, 𝐸(𝐾, 𝑝𝑖) 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖. 𝑒. , 𝑜𝑛𝑒 − 𝑡𝑜 − 𝑜𝑛𝑒 .

Encryption

Algorithm

Message

source

Decryption

Algorithm
DestinationChannel

𝑷 𝑪 = 𝑬(𝐾, 𝑷) 𝑷 = 𝑫(𝐾, 𝑪)

Key source Secure Channel

𝐾 𝐾

Cryptanalyst
 𝑷
 𝑲

11

Public-Key cryptosystems: Asymmetric algorithms

Safwan El Assad

Principle: Secrecy

Bob

𝑷 = 𝑫(𝑷𝑹𝒃, 𝑪)

Encryption

Algorithm

(RSA, ECC)
Hello

Decryption

Algorithm

µ$@%£

HelloChannel

Alice 𝑪 = 𝑬(𝑷𝑼𝒃, 𝑷)

𝑷

Cryptanalyst

Bob’s Public key: 𝑷𝑼𝒃

 𝑷𝑹𝒃

𝑷𝑼𝒃

 𝑷

Bob’s Private key: 𝑷𝑹𝒃

Bob

𝑷 = 𝑫(𝑷𝑼𝒂, 𝑪)

Encryption

Algorithm

(RSA, ECC)
Hello

Decryption

Algorithm

µ$@%£

HelloChannel

Alice 𝑪 = 𝑬(𝑷𝑹𝒂,𝑷)

𝑷

Cryptanalyst 𝑷𝑹𝒂

𝑷𝑼𝒂

Alice’s Private key: 𝑷𝑹𝒂 Alice’s Public key:𝑷𝑼𝒂

Principle: Authentication

Exhaustive attacks: an optical computer is # 1,000 times faster than a classical computer

Safwan El Assad 12

Principle of chaos-based cryptosystems

Chaos-Based

Decryption

Algorithm

Chaotic

Generator
Secret key

Encrypted

and Perturbed

Information

Decrypted

Information

Errors impact on the

decryption information

Cryptographic modes

Bob

Key management

and Protocol Cryptanalyst

Useful

Information
Encrypted

Information

Chaotic

Generator

Chaos-Based

Encryption

Algorithm

Channel

Noise

Secret key

Text, Audio,

Image, Video

Design of robust

and fast chaotic

generators

Design of robust

and fast encryption

algorithms

Alice

Eve

Advanced Encryption Standard: AES

Safwan El Assad
13

References:

Advanced Encryption Standard (AES), FIPS PUB 197, November 26,

2001.

Books:

Joan Daemen and Vincent Rijmen, “The design of Rijndael”.

Springer, 2010.

William Stallings, “Cryptography and Network Security, Principles

and Practice”. Sixth Edition, Pearson, 2014. Chapter 5.

Christof Paar and Jan Pelzl, “Understanding Cryptography”.

Springer, 2010. Chapter 4.

Douglas. R. Stinson, “Cryptography theory and Practice”. Third

edition, Taylor & Francis Group, LLC, 2006. Chapter 3.

Presentations Power Point and demo

AES-William_Stallings.ppt

Understanding_Cryptography_Chptr_4---AES.ppt

CrypTool project: www.cryptool.org by Enrique Zabala

http://www.cryptool.org/

Learning Objectives: W. Stallings

 Present an overview of the general structure of AES

 Understand the transformations used in AES Encryption

 Byte Substitution layer

 Diffusion layer:

Shift rows

Mix columns

 Key Addition layer

 Explain the AES Key Expansion Algorithm.

 Understand the use of Polynomial Arithmetic in GF(28)

 Euclidian algorithm and Extended Euclidian algorithm

 Describe the Decryption process

 Practical Issues
Safwan El Assad

14

Advanced Encryption Standard: AES

Safwan El Assad
15

Overview of the AES Algorithm

AES origins: Lawrie Brown

 Clear a replacement for DES (Data Encryption Standard) was

needed

 have theoretical attacks that can break it

 have demonstrated exhaustive key search attacks

 Can use Triple-DES – but slow, has small blocks

 US NIST (National Institute of Standards and Technology)

issued call for ciphers in 1997

 15 candidates accepted in Jun 98

 5 were shortlisted in Aug-99

 Rijndael was selected as the AES in Oct-2000

 Issued as FIPS PUB 197 standard in Nov-2001

Safwan El Assad
16

Overview of the AES Algorithm

The AES Cipher - Rijndael

Key size

(bits/bytes/words)

Number of rounds

Nr

128 / 16 / 4 10

192 / 24 / 6 12

256 / 32 / 8 14
The State

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

Input array State array Output array

𝒔 𝒓, 𝒄 = 𝒊𝒏[𝒓 + 𝟒𝒄] for 𝟎 ≤ 𝒓 < 𝟒 and 𝟎 ≤ 𝒄 < 𝟒.

𝒐𝒖𝒕 𝒓 + 𝟒𝒄 = 𝒔[𝒓, 𝒄] for 𝟎 ≤ 𝒓 < 𝟒 and 𝟎 ≤ 𝒄 < 𝟒.

𝒘𝟎 = 𝒔𝟎,𝟎 𝒔𝟏,𝟎 𝒔𝟐,𝟎 𝒔𝟑,𝟎 𝒘𝟏 = 𝒔𝟎,𝟏 𝒔𝟏,𝟏 𝒔𝟐,𝟏 𝒔𝟑,𝟏
𝒘𝟐 = 𝒔𝟎,𝟐 𝒔𝟏,𝟐 𝒔𝟐,𝟐 𝒔𝟑,𝟐 𝒘𝟑 = 𝒔𝟎,𝟑 𝒔𝟏,𝟑 𝒔𝟐,𝟑 𝒔𝟑,𝟑

Safwan El Assad
17

AES

Encryption

Bloc Diagram

Key K (16 bytes)

Plaintext (16 bytes)

Key Addition Layer

Byte Substitution Layer

Shift Rows Layer

Mix Columns Layer

Key Addition Layer

Byte Substitution Layer

Shift Rows Layer

Key Addition Layer

Ciphertext (16 bytes)

Byte Substitution Layer

Shift Rows Layer

Mix Columns Layer

Key Addition Layer

𝐾0 = 𝑤[0, 3]

Key Expansion 1

𝐾1 = 𝑤[4, 7]

Key Expansion Nr-1

Key Expansion Nr

𝐾0

𝐾𝑁𝑟−1 = 𝑤[36, 39]

𝐾𝑁𝑟 = 𝑤[40, 43]

Round 1

Round Nr-1

Round Nr

Nr = 10

Safwan El Assad 18

AES Encryption Round for rounds 1, 2,…, Nr-1

19 a0 9a e9

3d f4 c6 f8

e3 e2 8d 48

be 2b 2a 08

Hex y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

d4 e0 b8 1e

27 bf b4 41

11 98 5d 52

ae f1 e5 30

AES S-box, substitution values in hexadecimal notation for input byte (xy)

State

State

Sub

Bytes

Hexadecimal notation: 9a = 1001 1010 (1 byte)

 S-box is the only nonlinear element of the AES:

𝑩𝒚𝒕𝒆𝑺𝒖𝒃 𝑩𝒊 ⨁𝑩𝒚𝒕𝒆𝑺𝒖𝒃 𝑩𝒋 ≠ 𝑩𝒚𝒕𝒆𝑺𝒖𝒃 𝑩𝒊⨁𝑩𝒋 , 𝒇𝒐𝒓 𝒊, 𝒋 = 𝟎,⋯ , 𝟏𝟓

 S-box is Bijective: one-to-one mapping of input and output bytes

 S-box is uniquely reversed

𝑺 𝟗𝒂 𝒉𝒆𝒙 = 𝒃𝟖 𝒉𝒆𝒙

Safwan El Assad 19

Shift Rows

No shift

One position left shift

Two positions left shift

Three positions left shift

AES Encryption Round for rounds 1, 2,…, Nr-1

d4 e0 b8 1e

27 bf b4 41

11 98 5d 52

ae f1 e5 30

d4 e0 b8 1e

bf b4 41 27

5d 52 11 98

30 ae f1 e5

Mix Columns

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

d4 e0 b8 1e

bf b4 41 27

5d 52 11 98

30 ae f1 e5

04 e0 48 28

66 cb f8 06

81 19 d3 26

e5 9a 7a 4c

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

𝒔0,0
𝒔1,0
𝒔2,0
𝒔3,0

=

𝒔′0,0
𝒔′1,0
𝒔′2,0
𝒔′3,0

 Each column is processed separately

 Each byte is replaced by a value dependent

on all 4 bytes in the column

 Effectively a matrix multiplication in GF(28)

using prime poly 𝑷 𝒙 = 𝒙𝟖 + 𝒙𝟒 + 𝒙𝟑 + 𝒙 + 𝟏

Safwan El Assad 20

AES Encryption Round for rounds 1, 2,…, Nr-1

Add round Key 𝑲𝟏 produced by the Key Expansion column by column

04 e0 48 28

66 cb f8 06

81 19 d3 26

e5 9a 7a 4c

a0 88 23 2a

fa 54 a3 6c

fe 2c 39 76

17 b1 39 05

a4 68 6b 02

9c 9f 5b 6a

7f 35 ea 50

f2 2b 43 49

𝑲𝟏=w[4, 7]

Key size

(bits/bytes/words)

Number of rounds

Nr

Number of

subkeys

Expanded Key size

(bytes/words)

128 / 16 / 4 10 11 176/44

192 / 24 / 6 12 13 208/52

256 / 32 / 8 14 15 240/60

Key Expansion

Safwan El Assad 21

Key Expansion algorithm

for 128-bit Key AES

k0 k4 k8 k12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

W[36] W[37] W[38] W[39]

G

W[40] W[41] W[42] W[43]

W[0] W[1] W[2] W[3]

G

W[4] W[5] W[6] W[7]

Round key 0

Round key 1

Round key 9

Round key 10

B0 B1 B2 B3

B1 B2 B3 B0

w

SSSS

B*1 B*2 B*3 B*0

RC[j]

w’

32

8

8

32

Function G

of round j

Round key 0

is the original

AES key

The function G()

adds nonlinearity

and removes

symmetry in AES

Safwan El Assad
22

AES Key expansion for 128-bit

Round j RC[j]

1 {01}

2 {02}

3 {04}

4 {08}

5 {10}

6 {20}

7 {40}

8 {80}

9 {1b}

10 {36}

The round constant

is defined as:

Rcon[j] = (RC[j], 0, 0, 0) with RC[1] = 1,

RC[j] = 2 x RC[j-1] and with multiplication defined over 𝑮𝑭 𝟐𝟖 ,

e.g, at round 9:

{02} x {80} = (000000010) x (10000000) = (00000000) ⨁ (00011011) =

(00011011) = {1b}

Key 0 ---> (w[0], w[1], w[2], w[3])

The other array elements are computed as:

The leftmost word of a round key w[4i], where

i = 1,…,10, is: w[4i] = w[4(i-1)]+G(w[4i-1]);

G() is a nonlinear function with a 4-byte input and output.

The remaining 3 words of a round key are computed recursively as:

w[4i+j] = w[4i+j-1] + w[4(i-1)+j], i=1,…,10; j=1, 2, 3

23

AES Arithmetic

Finite Field Arithmetic

 In AES all operations are performed on 8 bits bytes. The arithmetic

operations of addition, subtraction, multiplication, division and inversion are

performed over the Extension Finite Galois Field GF(28) of 256 elements [0, 1,

…, 255], with the irreducible polynomial: 𝑷 𝒙 = 𝒙𝟖 + 𝒙𝟒 + 𝒙𝟑 + 𝒙 + 𝟏

 Arithmetic on the coefficients is performed over GF(2) which is the smallest

Prime Field. Addition modulo 2 is equivalent to XOR gate and multiplication is

equivalent to the logical AND gate.

Remark:

 In the extension field GF(28) the order = 256 is not a Prime Number, then the

addition and multiplication operation cannot be represented by addition and

multiplication of integers modulo 28. For that:

 In the extension field GF(28) elements are not represented as integers but as

polynomials with coefficients in GF(2). Computation in GF(28) is done by

performing a certain type of polynomial arithmetic. The polynomials have a

maximum degree of 7.

24

AES Arithmetic

 Each element 𝑨 ∈ 𝑮𝑭 𝟐𝟖 is represented as:

𝑨 𝒙 = 𝒂𝟕𝒙
𝟕 + 𝒂𝟔𝒙

𝟔 +⋯+ 𝒂𝟏𝒙 + 𝒂𝟎, 𝒂𝒊∈ 𝑮𝑭 𝟐 = 𝟎, 𝟏

There are exactly 𝟐𝟖 = 𝟐𝟓𝟔 𝐬𝐮𝐜𝐡 𝐩𝐨𝐥𝐲𝐧𝐨𝐦𝐢𝐚𝐥𝐬.

The set of these 256 polynomials is the finite field 𝑮𝑭 𝟐𝟖 .

 Every polynomial can simply be stored in digital form as an 8-bit word:

𝑨 = (𝒂𝟕, 𝒂𝟔, 𝒂𝟓, 𝒂𝟒, 𝒂𝟑, 𝒂𝟐, 𝒂𝟏, 𝒂𝟎)

We do not have to store the factor 𝒙𝟕, 𝒙𝟔, etc. It is clear from the bit positions to

which power 𝒙𝒊 each coefficient belongs.

Safwan El Assad 25

AES Arithmetic

Example of addition modulo 2:

In binary notation: (10110001) ⨁ (00100101) = (10010100)

In hexadecimal notation: {b1} ⨁ {25} = {94}

Addition and Subtraction in GF(28)

Let 𝑨 𝒙 ,𝑩 𝒙 ∈ 𝑮𝑭(𝟐𝟖).

The sum or difference of two elements is:

𝑪 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 = 𝑨 𝒙 − 𝑩 𝒙 =

𝒊=𝟎

𝟕

𝒄𝒊𝒙
𝒊 ,

𝒄𝒊 = 𝒂𝒊 + 𝒃𝒊 𝐦𝐨𝐝 𝟐 = 𝒂𝒊 − 𝒃𝒊 𝐦𝐨𝐝 𝟐 = 𝒂𝒊⨁𝒃𝒊

Note that we perform modulo 2 addition (or subtraction) with the coefficients.

𝑨 𝒙 = 𝒙𝟕 + 𝒙𝟓+𝒙𝟒 + 𝟏

𝑩 𝒙 = 𝒙𝟓 + 𝒙𝟐 + 𝟏

𝑪 𝒙 = 𝒙𝟕 + 𝒙𝟒 + 𝒙𝟐

Safwan El Assad 26

AES Arithmetic

Brief Reminder

Polynomial Arithmetic

 Multiplication of two polynomials:

𝑨 𝒙 =

𝒊=𝟎

𝒎

𝒂𝒊𝒙
𝒊, 𝑩 𝒙 =

𝒋=𝟎

𝒒

𝒃𝒋𝒙
𝒋,

𝑪 𝒙 = 𝑨 𝒙 × 𝑩 𝒙 =

𝒊=𝟎

𝒎

𝒋=𝟎

𝒒

𝒂𝒊𝒃𝒋𝒙
𝒊+𝒋 =

𝒏=𝟎

𝒎+𝒒

𝒊=𝟎

𝒎

𝒂𝒊𝒃𝒏−𝒊 𝒙𝒏 , 𝒏 − 𝒊 ∈ 𝟎,⋯ , 𝒒

𝒄𝒏 =

𝒊=𝟎

𝒎

𝒂𝒊𝒃𝒏−𝒊 𝒂𝒊, 𝒃𝒊, 𝒄𝒊 ∈ 𝑮𝑭 𝟐 = 𝟎, 𝟏

Is the discrete convolutional product of the coefficients of two polynomials

𝒄𝟎 = 𝒂𝟎𝒃𝟎, 𝒄𝟏= 𝒂𝟎𝒃𝟏 + 𝒂𝟏𝒃𝟎 , 𝒄𝟐= 𝒂𝟎𝒃𝟐 + 𝒂𝟏𝒃𝟏 + 𝒂𝟐𝒃𝟎

𝒄𝒎+𝒒−𝟏 = 𝒂𝒎−𝟏𝒃𝒒 + 𝒂𝒎𝒃𝒒−𝟏 , 𝒄𝒎+𝒒= 𝒂𝒎𝒃𝒒

Safwan El Assad 27

𝑨 𝒙 = 𝒙𝟕 + 𝒙𝟓 + 𝒙𝟒 + 𝟏, 𝑩 𝒙 = 𝒙𝟓+ 𝒙𝟐 + 𝟏

𝑨 𝒙 × 𝑩 𝒙 = 𝒙𝟕 + 𝒙𝟓+𝒙𝟒 + 𝟏

× 𝒙𝟓 + 𝒙𝟐 + 𝟏

𝒙𝟕 + 𝒙𝟓+𝒙𝟒 + 𝟏

𝒙𝟗 + 𝒙𝟕 + 𝒙𝟔 + 𝒙𝟐

𝒙𝟏𝟐 + 𝒙𝟏𝟎 + 𝒙𝟗 + 𝒙𝟓

𝒙𝟏𝟐 + 𝒙𝟏𝟎 + 𝒙𝟔 + 𝒙𝟒 + 𝒙𝟐+ 𝟏

Example of polynomials multiplication over GF(2)

Verification: m=7, q=5

𝒄𝟎 = 𝒂𝟎𝒃𝟎 = 𝟏, 𝒄𝟏= 𝒂𝟎𝒃𝟏 + 𝒂𝟏𝒃𝟎 = 𝟎, 𝒄𝟐= 𝒂𝟎𝒃𝟐 + 𝒂𝟏𝒃𝟏 + 𝒂𝟐𝒃𝟎 = 𝟏

𝒄𝒎+𝒒−𝟏 = 𝒂𝒎−𝟏𝒃𝒒 + 𝒂𝒎𝒃𝒒−𝟏 = 𝟎, 𝒄𝒎+𝒒= 𝒂𝒎 = 𝟏

Safwan El Assad
28

AES Arithmetic

 Polynomials division over GF(2)

If we divide 𝑪 𝒙 by 𝐃 𝒙 , we get a quotient 𝐐 𝒙 and a remainder 𝐑 𝒙 that

obey the relationship:

𝑪 𝒙 = 𝑫 𝒙 𝑸 𝒙 + 𝑹(𝒙)

With polynomial degrees:

Degrees of:

𝑪 𝒙 = 𝒏, 𝑫 𝒙 = 𝒌, 𝑸 𝒙 = 𝒏 − 𝒌 , 𝑹 𝒙 < 𝒌

In analogy with integer modular arithmetic, we can write:

𝑹 𝒙 = 𝑪 𝒙 𝒎𝒐𝒅 𝑫(𝒙)

If 𝑅 𝑥 = 𝟎, than we can say 𝑫 𝒙 divides 𝑪 𝒙 or 𝑫 𝒙 is a divisor of 𝑪 𝒙

Safwan El Assad 29

AES Arithmetic

𝒙𝟏𝟐 + 𝒙𝟏𝟎 + 𝒙𝟔 + +𝒙𝟒 + 𝒙𝟐+ 𝟏
𝒙𝟏𝟐+ 𝒙𝟕+𝒙𝟔

𝒙𝟏𝟎 + 𝒙𝟓 + 𝒙𝟒

𝒙𝟕+ 𝒙𝟐+ 𝒙

𝑹 𝒙 = 𝒙𝟓+ 𝒙 + 𝟏

𝒙𝟔 + 𝒙 + 𝟏

𝒙𝟔 + 𝒙𝟒 + 𝒙

Example of polynomials division over GF(2)

Safwan El Assad 30

AES Arithmetic
Modular Polynomial Arithmetic

Multiplication in GF(28)

Let 𝑨 𝒙 ,𝑩 𝒙 ∈ 𝑮𝑭 𝟐𝟖 and let 𝑷 𝒙 = 𝒙𝟖 + 𝒙𝟒 + 𝒙𝟑 + 𝒙 + 𝟏 or {01} {1b} in

hexadecimal notation, be the irreducible polynomial or prime polynomial

The multiplication of the two polynomials 𝑨 𝒙 ,𝑩 𝒙 is performed as:

𝑪 𝒙 = 𝑨 𝒙 × 𝑩 𝒙 𝒎𝒐𝒅 𝑷 𝒙 , 𝑪(𝒙) ∈ 𝑮𝑭 𝟐𝟖

This means that if the degree of 𝑪 𝒙 is greater than 7, then 𝑪 𝒙 is reduced

modulo 𝑷 𝒙 of degree 8. The remainder is expressed as: 𝑹 𝒙 = 𝑪 𝒙 𝒎𝒐𝒅 𝑷(𝒙)

𝒙𝟏𝟐 + 𝒙𝟏𝟎 + 𝒙𝟔 + 𝒙𝟒 + 𝒙𝟐+ 𝟏
𝒙𝟏𝟐+ 𝒙𝟖+𝒙𝟕 𝒙𝟓 + 𝒙𝟒

𝒙𝟏𝟎 + 𝒙𝟔 + 𝒙𝟓 + 𝒙𝟑+𝒙𝟐

𝒙𝟖+ 𝒙𝟒+ 𝒙𝟑 + 𝒙 + 𝟏

𝑹 𝒙 = 𝒙𝟕+ 𝒙𝟒 + 𝒙

𝒙𝟖 + 𝒙𝟒+𝒙𝟑 + 𝒙 + 𝟏

𝒙𝟒 + 𝒙𝟐 + 𝟏

Safwan El Assad 31

Remark:

There is no simple XOR operation that will accomplish multiplication in 𝑮𝑭 𝟐𝒌 .

However a straightforward implemented technique, based on the following

observation is available:

𝒙𝒌𝒎𝒐𝒅 𝑷 𝒙 = 𝑷 𝒙 − 𝒙𝒌 in AES: 𝒙𝟖 𝒎𝒐𝒅 𝑷 𝒙 = 𝒙𝟒 + 𝒙𝟑 + 𝒙 + 𝟏 (1)

Consider:

𝑨 𝒙 = 𝒂𝟕𝒙
𝟕 + 𝒂𝟔𝒙

𝟔 +⋯+ 𝒂𝟏𝒙 + 𝒂𝟎 ∈ 𝑮𝑭 𝟐𝟖

𝒙 × 𝑨 𝒙 = (𝒂𝟕𝒙
𝟖 + 𝒂𝟔𝒙

𝟕 +⋯+ 𝒂𝟏𝒙
𝟐 + 𝒂𝟎𝒙) 𝒎𝒐𝒅 𝑷(𝒙)

If 𝑎7 = 𝟎, then no need for reduction.

If 𝑎7 = 𝟏, then reduction modulo 𝑷 𝒙 is achieved using Eq (1):

𝒙 × 𝑨 𝒙 = (𝒂𝟔𝒙
𝟕 +⋯+ 𝒂𝟏𝒙

𝟐 + 𝒂𝟎𝒙) + 𝒙𝟒 + 𝒙𝟑 + 𝒙 + 𝟏

So, 𝒙 × 𝑨 𝒙 =
𝒂𝟔, 𝒂𝟓, 𝒂𝟒, 𝒂𝟑, 𝒂𝟐, 𝒂𝟏, 𝒂𝟎, 𝟎 𝒊𝒇 𝒂𝟕 = 𝟎

𝒂𝟔, 𝒂𝟓, 𝒂𝟒, 𝒂𝟑, 𝒂𝟐, 𝒂𝟏, 𝒂𝟎, 𝟎 ⨁ 𝟎𝟎𝟎𝟏𝟏𝟎𝟏𝟏 𝒊𝒇 𝒂𝟕 = 𝟏
(2)

It follows that multiplication by 𝒙 (i.e., 00000010) can be implemented as a 1-bit

left shift followed by a conditional bitwise XOR with 𝟎𝟎𝟎𝟏𝟏𝟎𝟏𝟏 .

AES Arithmetic

Safwan El Assad 32

AES Arithmetic

Multiplication by a higher power of 𝒙 can be achieved by repeated Eq (2). By

adding intermediate results, multiplication by any constant in 𝑮𝑭 𝟐𝟖 can be

achieved.

Example:

𝑨 𝒙 = 𝒙𝟕 + 𝒙𝟓 + 𝒙𝟒 + 𝟏

𝒙 × 𝑨 𝒙 = 𝒙𝟖 + 𝒙𝟔 + 𝒙𝟓 + 𝒙 𝒎𝒐𝒅 𝑷 𝒙

𝒙 × 𝑨 𝒙 = 𝒙𝟔 + 𝒙𝟓 + 𝑥 + 𝒙𝟒 + 𝒙𝟑 + 𝒙 + 𝟏 = 𝒙𝟔 + 𝒙𝟓 + 𝒙𝟒 + 𝒙𝟑 + 𝟏

Indeed:

𝒙𝟖 + 𝒙𝟔+𝒙𝟓 + 𝒙
𝒙𝟖+ 𝒙𝟒+ 𝒙𝟑 + 𝒙 + 𝟏

𝑹 𝒙 = 𝒙𝟔+𝒙𝟓 + 𝒙𝟒 + 𝒙𝟑 + 𝟏

𝒙𝟖 + 𝒙𝟒+𝒙𝟑 + 𝒙 + 𝟏

𝟏

Safwan El Assad 33

AES Arithmetic

Inversion in 𝑮𝑭 𝟐𝟖

By using the Extended Euclidean Algorithm, the inverse 𝑨−𝟏 of a nonzero

element 𝑨 ∈ 𝑮𝑭 𝟐𝟖 is defined by:

𝑨−𝟏 𝒙 × 𝑨 𝒙 = 𝟏𝒎𝒐𝒅 𝑷(𝒙)

The element “0” of the field doesn't have an inverse, however in the AES S-box,

the input value ‘0’ is mapped to the output value ‘0’ .

For small fields (order or cardinality of a field is < 216 elements, Lookup tables

which contain the precomputed inverses of all field are often used. The

following table shows the values of the multiplication inverse in 𝑮𝑭 𝟐𝟖 for

bytes (xy).

Note that the table below doesn’t contain the S-box of AES.

Indeed, the S-box does not have any fixed points, i.e., there are not any input

values 𝑨𝒊 such that 𝑺(𝑨𝒊) = 𝑨𝒊, even for the input value ‘0’.

Safwan El Assad 34

Hex y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0 00 01 8d f6 cb 52 7b d1 e8 4f 29 c0 b0 e1 e5 c7

1 74 b4 aa 4b 99 2b 60 5f 58 3f fd cc ff 40 ee b2

2 3a 6e 5a f1 55 4d a8 c9 c1 0a 98 15 30 44 a2 c2

3 2c 45 92 6c f3 39 66 42 f2 35 20 6f 77 bb 59 19

4 1d fe 37 67 2d 31 f5 69 a7 64 ab 13 54 25 e9 09

5 ed 5c 05 ca 4c 24 87 bf 18 3e 22 f0 51 ec 61 17

6 16 5e af d3 49 a6 36 43 f4 47 91 df 33 93 21 3b

7 79 b7 97 85 10 b5 ba 3c b6 70 d0 06 a1 fa 81 82

8 83 7e 7f 80 96 73 be 56 9b 9e 95 d9 f7 02 b9 a4

9 de 6a 32 6d d8 8a 84 72 2a 14 9f 88 f9 dc 89 9a

a fb 7c 2e c3 8f b8 65 48 26 c8 12 4a ce e7 d2 62

b 0c e0 1f ef 11 75 78 71 a5 8e 76 3d bd bc 86 57

c 0b 28 2f a3 da d4 e4 0f a9 27 53 04 1b fc ac e6

d 7a 07 ae 63 c5 db e2 ea 94 8b c4 d5 9d f8 90 6b

e b1 0d d6 eb c6 0e cf ad 08 4e d7 e3 5d 50 1e b3

f 5b 23 38 34 68 46 03 8c dd 9c 7d a0 cd 1a 41 1c

Inversion in 𝑮𝑭 𝟐𝟖
AES Arithmetic

Multiplication inverse table in 𝑮𝑭 𝟐𝟖 for bytes {xy}

Example: 𝑨 𝒙 = 𝒙𝟕 + 𝒙𝟓 + 𝒙𝟒 + 𝟏 = 𝟏𝟎𝟏𝟏𝟎𝟎𝟎𝟏 = 𝐛𝟏 = 𝐱𝐲

The inverse 𝑨−𝟏 𝒙 is 𝐞𝟎 = 𝟏𝟏𝟏𝟎𝟎𝟎𝟎𝟎 = 𝒙𝟕 + 𝒙𝟔 + 𝒙𝟓. This can be verified by:

(𝒙𝟕+𝒙𝟓 + 𝒙𝟒 + 𝟏) × (𝒙𝟕+𝒙𝟔 + 𝒙𝟓) = 𝟏𝒎𝒐𝒅 𝑷(𝒙)

Safwan El Assad 35

Mathematical description of the AES S-Box

AES S-Box is built by applying two mathematical transformation.

1. Map each byte 𝑨 ∈ 𝑮𝑭 𝟐𝟖 to its multiplicative inverse 𝑩 = 𝑨−𝟏.

2. Apply the affine transformation to each bit of each byte 𝑩

𝒅𝒊 = 𝒃𝒊⨁𝒃 𝒊+𝟒 𝒎𝒐𝒅 𝟖⨁𝒃 𝒊+𝟓 𝒎𝒐𝒅 𝟖⨁𝒃 𝒊+𝟔 𝒎𝒐𝒅 𝟖⨁𝒃 𝒊+𝟕 𝒎𝒐𝒅 𝟖⨁𝒄𝒊

Where 𝒄𝒊 is the ith bit of byte 𝑪 = 𝟎𝟏𝟏𝟎𝟎𝟎𝟏𝟏 = 𝟔𝟑

Multiplicative

inverse in 𝑮𝑭 𝟐𝟖

Affine

mapping

𝑨 𝑩 = 𝑨−𝟏 𝑫 = 𝑺(𝑨)

𝒅𝟎
𝒅𝟏
𝒅𝟐
𝒅𝟑
𝒅𝟒
𝒅𝟓
𝒅𝟔
𝒅𝟕

=

𝟏
𝟏
𝟏
𝟏
𝟏
𝟎
𝟎
𝟎

𝟎
𝟏
𝟏
𝟏
𝟏
𝟏
𝟎
𝟎

𝟎
𝟎
𝟏
𝟏
𝟏
𝟏
𝟏
𝟎

𝟎
𝟎
𝟎
𝟏
𝟏
𝟏
𝟏
𝟏

𝟏
𝟎
𝟎
𝟎
𝟏
𝟏
𝟏
𝟏

𝟏
𝟏
𝟎
𝟎
𝟎
𝟏
𝟏
𝟏

𝟏
𝟏
𝟏
𝟎
𝟎
𝟎
𝟏
𝟏

𝟏
𝟏
𝟏
𝟏
𝟎
𝟎
𝟎
𝟏

×

𝒃𝟎
𝒃𝟏
𝒃𝟐
𝒃𝟑
𝒃𝟒
𝒃𝟓
𝒃𝟔
𝒃𝟕

⨁

𝟏
𝟏
𝟎
𝟎
𝟎
𝟏
𝟏
𝟎

The AES standard depict the affine transformation in matrix form as follows:

Example:

𝑨 = 𝟏𝟎𝟏𝟏𝟎𝟎𝟎𝟏 = 𝐛𝟏 = 𝐱𝐲
From multiplicative inverse:

𝑩 = 𝑨−𝟏 = 𝐞𝟎
From affine mapping:

𝑫 = 𝑺 𝑨 = 𝒄𝟖
For 𝑨 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 = 𝟎𝟎 = 𝐱𝐲

𝑫 = 𝑺 𝑨 = 𝟔𝟑

Safwan El Assad 36

AES S-Box

Remark:

The Multiplicative inverse operation in 𝑮𝑭 𝟐𝟖 is highly nonlinear, this provides

optimum protection against known cryptanalytic attacks.

The affine mapping destroys the algebraic structure of the Galois field, this

allows to prevent attacks that would exploit the finite field inversion.

Safwan El Assad 37

AES Mix Columns transformation

Mix Columns layer is defined by the following matrixes multiplication on state

𝟎𝟐 𝟎𝟑 𝟎𝟏 𝟎𝟏
𝟎𝟏 𝟎𝟐 𝟎𝟑 𝟎𝟏
𝟎𝟏 𝟎𝟏 𝟎𝟐 𝟎𝟑
𝟎𝟑 𝟎𝟏 𝟎𝟏 𝟎𝟐

×

𝒔𝟎,𝟎 𝒔𝟎,𝟏 𝒔𝟎,𝟐 𝒔𝟎,𝟑
𝒔𝟏,𝟎 𝒔𝟏,𝟏 𝒔𝟏,𝟐 𝒔𝟏,𝟑
𝒔𝟐,𝟎 𝒔𝟐,𝟏 𝒔𝟐,𝟐 𝒔𝟐,𝟑
𝒔𝟑,𝟎 𝒔𝟑,𝟏 𝒔𝟑,𝟐 𝒔𝟑,𝟑

=

𝒔′𝟎,𝟎 𝒔′𝟎,𝟏 𝒔′𝟎,𝟐 𝒔′𝟎,𝟑
𝒔′𝟏,𝟎 𝒔′𝟏,𝟏 𝒔′𝟏,𝟐 𝒔′𝟏,𝟑
𝒔′𝟐,𝟎 𝒔′𝟐,𝟏 𝒔′𝟐,𝟐 𝒔′𝟐,𝟑
𝒔′𝟑,𝟎 𝒔′𝟑,𝟏 𝒔′𝟑,𝟐 𝒔′𝟑,𝟑

Mix Column transformation operates on each column j of state individually and

can be expressed as:

𝒔′𝟎,𝒋 = 𝟎𝟐 × 𝒔𝟎,𝒋 ⨁ 𝟎𝟑 × 𝒔𝟏,𝒋 ⨁ 𝟎𝟏 × 𝒔𝟐,𝒋 ⨁ 𝟎𝟏 × 𝒔𝟑,𝒋
𝒔′𝟏,𝒋 = 𝟎𝟏 × 𝒔𝟎,𝒋 ⨁ 𝟎𝟐 × 𝒔𝟏,𝒋 ⨁ 𝟎𝟑 × 𝒔𝟐,𝒋 ⨁ 𝟎𝟏 × 𝒔𝟑,𝒋
𝒔′𝟐,𝒋 = 𝟎𝟏 × 𝒔𝟎,𝒋 ⨁ 𝟎𝟏 × 𝒔𝟏,𝒋 ⨁ 𝟎𝟐 × 𝒔𝟐,𝒋 ⨁ 𝟎𝟑 × 𝒔𝟑,𝒋
𝒔′𝟑,𝒋 = 𝟎𝟑 × 𝒔𝟎,𝒋 ⨁ 𝟎𝟏 × 𝒔𝟏,𝒋 ⨁ 𝟎𝟏 × 𝒔𝟐,𝒋 ⨁ 𝟎𝟐 × 𝒔𝟑,𝒋

The additions and multiplications are performed in 𝑮𝑭 𝟐𝟖 .

Mix Columns is the major diffusion element. Indeed, every input byte influences

4 output bytes. The combination of the Shift Rows and Mix Columns layer

makes it possible that after only three rounds every byte of the state matrix

depends on all 16 plaintext bytes.

In AES, encryption is more important than decryption for 2 reasons:

1. For the CTR, OFB and CFB cipher modes, only Encryption is used.

2. AES can be used to construct a message authentication code, and for this,

only encryption is used.

Safwan El Assad 38

AES Mix Columns transformation

𝟎𝟐 𝟎𝟑 𝟎𝟏 𝟎𝟏
𝟎𝟏 𝟎𝟐 𝟎𝟑 𝟎𝟏
𝟎𝟏 𝟎𝟏 𝟎𝟐 𝟎𝟑
𝟎𝟑 𝟎𝟏 𝟎𝟏 𝟎𝟐

×

𝒅𝟒
𝒃𝒇
𝟓𝒅
𝟑𝟎

=

𝟎𝟒
𝟔𝟔
𝟖𝟏
𝒆𝟓

𝟎𝟐 × 𝒅𝟒 ⨁ 𝟎𝟑 × 𝒃𝒇 ⨁ 𝟎𝟏 × 𝟓𝒅 ⨁ 𝟎𝟏 × 𝟑𝟎 = 𝟎𝟒
𝟎𝟏 × 𝒅𝟒 ⨁ 𝟎𝟐 × 𝒃𝒇 ⨁ 𝟎𝟑 × 𝟓𝒅 ⨁ 𝟎𝟏 × 𝟑𝟎 = 𝟔𝟔
𝟎𝟏 × 𝒅𝟒 ⨁ 𝟎𝟏 × 𝒃𝒇 ⨁ 𝟎𝟐 × 𝟓𝒅 ⨁ 𝟎𝟑 × 𝟑𝟎 = 𝟖𝟏
𝟎𝟑 × 𝒅𝟒 ⨁ 𝟎𝟏 × 𝒃𝒇 ⨁ 𝟎𝟏 × 𝟓𝒅 ⨁ 𝟎𝟐 × 𝟑𝟎 = 𝒆𝟓

Example of Mix Columns for the first column:

To verify the Mix Columns operation on the first column, we need to show that:

𝒙 × 𝑨 𝒙 =
𝒂𝟔, 𝒂𝟓, 𝒂𝟒, 𝒂𝟑, 𝒂𝟐, 𝒂𝟏, 𝒂𝟎, 𝟎 𝒊𝒇 𝒂𝟕 = 𝟎

𝒂𝟔, 𝒂𝟓, 𝒂𝟒, 𝒂𝟑, 𝒂𝟐, 𝒂𝟏, 𝒂𝟎, 𝟎 ⨁ 𝟎𝟎𝟎𝟏𝟏𝟎𝟏𝟏 𝒊𝒇 𝒂𝟕 = 𝟏

𝒙 + 𝟏 × 𝑨 𝒙 = 𝒙 × 𝑨 𝒙 ⨁𝑨(𝒙)

Recall that, in 𝑮𝑭 𝟐𝟖 polynomial:

{01} = {00000001} = 1; {02} = {00000010} = 𝒙; {03} = {00000011} = (𝒙 + 𝟏)

{02} x {d4} = (00000010) x (11010100) = (10101000) ⨁ (00011011) = (10110011)

{03} x {bf} = (00000011) x (10111111) = (01111110) ⨁ (00011011)⨁(10111111)

= (11011010)

{01} x {5d} = (00000001) x (01011101) = (01011101)

{01} x {30} = (00000001) x (00110000) = (00110000)

So: (10110011) ⨁ (11011010) ⨁ (01011101) ⨁ (00110000) = (00000100) = {04}

The constants {01}, {02} or {03} are chosen for

their efficient polynomial multiplication, for e.g.

Multiplication by {02} is achieved by a left shift

by one bit, and a modular reduction with 𝑷 𝒙

39

Euclidian algorithm and Extended Euclidean algorithm

Mathematical reminder
Modular Arithmetic

Modulo operation

Let 𝒂, 𝒓,𝒎 𝝐 ℤ 𝒂𝒏𝒅𝒎 > 𝟎.𝑾𝒆 𝒄𝒂𝒏 𝒘𝒓𝒊𝒕𝒆:

𝒂 𝒎𝒐𝒅𝒎 = 𝒂 −
𝒂

𝒎
×𝒎 = 𝒓⟺ 𝒂 = 𝒒 ×𝒎+ 𝒓 ⟺ 𝒂 ≡ 𝒓𝒎𝒐𝒅𝒎

𝒘𝒊𝒕𝒉 𝟎 ≤ 𝒓 < 𝒎;𝒒 =
𝒂

𝒎

Where: 𝒎, 𝒓, 𝒒 are called the modulus, the reminder, the quotient and 𝒛 is the

largest integer less than or equal to z (the floor function).

Example: 42 𝑚𝑜𝑑 9 = 42 − 42

9
× 9 = 42 − 4 × 9 = 6 ⇒ 42 ≡ 6 𝑚𝑜𝑑 9

Multiplication Inverse

Let 𝒂 𝝐 ℤ, the inverse 𝒂−𝟏 (if exist) is defined such that:

𝒂 × 𝒂−𝟏 = 𝟏𝒎𝒐𝒅𝒎

An element 𝒂 𝝐 ℤ has a multiplicative inverse 𝒂−𝟏 if and only if

𝒈𝒄𝒅 𝒂,𝒎 = 𝟏

Where gcd is the greatest common divisor, i.e, the largest integer that divides

both 𝒂 and 𝒎. Then 𝒂 and 𝒎 are said to be relatively prime or coprime

40

Finding the Greatest Common Divisor by the Euclidean algorithm

The gcd of two positive integers 𝒓𝟎 and 𝒓𝟏 𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 with 𝒓𝟎 > 𝒓𝟏

can be calculated for small numbers, by factoring both numbers and finding the highest

common factor. Example:

Let 𝒓𝟎 = 𝟖𝟒 = 𝟐 × 𝟐 × 𝟑 × 𝟕; 𝒓𝟏 = 𝟑𝟎 = 𝟐 × 𝟑 × 𝟓

The gcd is the product of all common prime factors: 𝒈𝒄𝒅 𝟖𝟒, 𝟑𝟎 = 𝟐 × 𝟑 = 𝟔

For large numbers (bit length from 1024 to 3076 as used in public-key

algorithms), factoring often is not efficient and then it is necessary to use an

efficient algorithm such the Euclidean algorithm which is based on the

following observation:

𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 = 𝒈𝒄𝒅 𝒓𝟎 − 𝒓𝟏 , 𝒓𝟏 (3)

Indeed, let 𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 = 𝒈. Since, 𝒈 divides both 𝒓𝟎 and 𝒓𝟏, we can write:

𝒓𝟎 = 𝒈 × 𝒙 and 𝒓𝟏 = 𝒈 × 𝒚, where 𝒙 > 𝒚, and 𝒙 and 𝒚 are coprime integers,

i.e, they do not have common factors, also 𝑥 − 𝑦 and 𝒚 are coprime integers:

𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 = 𝒈𝒄𝒅 𝒓𝟎 − 𝒓𝟏 , 𝒓𝟏 = 𝒈𝒄𝒅 𝒈 × 𝑥 − 𝑦 , 𝒈 × 𝒚 = 𝒈

𝒈𝒄𝒅 𝒙, 𝒚 = 𝒈𝒄𝒅 𝑥 − 𝑦 , 𝒚 = 𝟏

Safwan El Assad

41

Let verify this property with the numbers from the previous example: 𝒓𝟎 = 𝟖𝟒, 𝒓𝟏= 𝟑𝟎

𝒓𝟎 − 𝒓𝟏 = 𝟓𝟒 = 𝟐 × 𝟑 × 𝟑 × 𝟑; 𝒓𝟏 = 𝟑𝟎 = 𝟐 × 𝟑 × 𝟓

⟹ 𝒈𝒄𝒅 𝟓𝟒, 𝟑𝟎 = 𝟐 × 𝟑 = 𝟔 = 𝒈𝒄𝒅 𝟖𝟒, 𝟑𝟎

Also, as: 𝒓𝟎 = 𝟔 × 𝟏𝟒, 𝒓𝟏= 𝟔 × 𝟓, then 𝒈𝒄𝒅 𝟏𝟒, 𝟓 = 𝒈𝒄𝒅 9, 𝟓 = 𝟏

It is follows immediately that, equation (3) can be applied iteratively:

𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 = 𝒈𝒄𝒅 𝒓𝟎 − 𝒓𝟏 , 𝒓𝟏 = 𝒈𝒄𝒅 𝒓𝟎 − 𝟐𝒓𝟏 , 𝒓𝟏 = ⋯ = 𝒈𝒄𝒅 𝒓𝟎 − 𝒒𝒓𝟏 , 𝒓𝟏

As long as 𝒓𝟎 − 𝒒𝒓𝟏 > 𝟎. Then:

𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 = 𝒈𝒄𝒅 𝒓𝟎 − 𝒒𝒓𝟏 , 𝒓𝟏 = 𝒈𝒄𝒅 𝒓𝟎 𝒎𝒐𝒅 𝒓𝟏, 𝒓𝟏 = 𝒈𝒄𝒅 𝒓𝟏, 𝒓𝟎 𝒎𝒐𝒅 𝒓𝟏 (4)

Because 𝒓𝟎 𝒎𝒐𝒅 𝒓𝟏 < 𝒓𝟏

Equation (4) is applied recursively until we obtain finally 𝒈𝒄𝒅 𝒓𝒏, 𝟎 = 𝒓𝒏.

Since each iteration preserves the 𝒈𝒄𝒅 of the previous iteration step, it turns out that

this final 𝒈𝒄𝒅 is the 𝒈𝒄𝒅 of the original problem, i.e:

𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 = ⋯ = 𝒈𝒄𝒅 𝒓𝒏, 𝟎 = 𝒓𝒏 (5)

Safwan El Assad

Finding the Greatest Common Divisor by the Euclidean algorithm

42

Let first show the system of equations calculating the 𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 of two given positive

integers 𝒓𝟎 and 𝒓𝟏 with 𝒓𝟎 > 𝒓𝟏.

𝒓𝒊−𝟐 𝒎𝒐𝒅 𝒓𝒊−𝟏 = 𝒓𝒊−𝟐 −
𝒓𝒊−𝟐
𝒓𝒊−𝟏

× 𝒓𝒊−𝟏 = 𝒓𝒊 ⟹ 𝒓𝒊−𝟐 = 𝒒𝒊−𝟏 × 𝒓𝒊−𝟏 + 𝒓𝒊

With 0 ≤ 𝒓𝒊 < 𝒓𝒊−𝟏 and 𝒒𝒊−𝟏 =
𝒓𝒊−𝟐
𝒓𝒊−𝟏

Example:

Safwan El Assad

𝒊 𝒓𝒊−𝟐 = 𝒒𝒊−𝟏 × 𝒓𝒊−𝟏 + 𝒓𝒊 0 ≤ 𝒓𝒊 < 𝒓𝒊−𝟏 𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 = 𝒈𝒄𝒅 𝟗𝟕𝟑, 𝟑𝟎𝟏

2 𝒓𝟎 = 𝒒𝟏 × 𝒓𝟏 + 𝒓𝟐 0 < 𝒓2 < 𝒓1 973 = 3 × 301 + 70 0 < 70 < 301

3 𝒓𝟏 = 𝒒𝟐 × 𝒓𝟐 + 𝒓𝟑 0 < 𝒓3 < 𝒓2 301 = 4 × 70 + 21 0 < 21 < 70

4 𝒓𝟐 = 𝒒𝟑 × 𝒓𝟑 + 𝒓𝟒 0 < 𝒓4 < 𝒓3 70 = 3 × 21 + 7 0 < 7 < 21

⋮ ⋮ ⋮ 21= 3 × 7 + 0

n 𝒓𝒏−𝟐 = 𝒒𝒏−𝟏 × 𝒓𝒏−𝟏 + 𝒓𝒏 0 < 𝒓𝑛 < 𝒓𝑛−1 𝑔𝑐𝑑 973, 301 = 7

n+1 𝒓𝒏−𝟏 = 𝒒𝒏 × 𝒓𝒏 + 𝟎

𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏 = 𝒓𝒏 𝑔𝑐𝑑 973, 301 = 𝑔𝑐𝑑 301, 70

𝑔𝑐𝑑 301, 70 = 𝑔𝑐𝑑 70, 21

𝑔𝑐𝑑 70, 21 = 𝑔𝑐𝑑 21, 7

𝑔𝑐𝑑 21, 7 = 𝑔𝑐𝑑 7, 0 = 7

Finding the Greatest Common Divisor by the Euclidean algorithm

43

Euclidean Algorithm

Input: positive integers 𝑟0 and 𝑟1 with 𝑟0 > 𝑟1

Output: 𝒈𝒄𝒅 𝒓𝟎, 𝒓𝟏

Initialization: 𝑖 = 1

Algorithm:

DO

𝑖 = 𝑖 + 1

𝒓𝒊 = 𝒓𝒊−𝟐 𝒎𝒐𝒅 𝒓𝒊−𝟏

WHILE 𝑟𝑖 ≠ 0

RETURN

𝑔𝑐𝑑 𝑟0, 𝑟1 = 𝑟𝑖−1

Note that the algorithm terminates if a remainder with the value 𝒓𝒊 = 𝟎 is computed.

The number of needed iterations is close to the number of digits of the input

operands. That means, for instance, that the number of iterations of a 𝒈𝒄𝒅 involving

1024-bit numbers is 1024.

Safwan El Assad

Euclid’s algorithm

44

The extended Euclidean algorithm allows us to compute modular inverses, which is

of major importance in asymmetric and symmetric encryption. It not only calculate the

gcd but also two additional integers s and t that verify the following equation:

𝑔𝑐𝑑 𝑟0, 𝑟1 = 𝑠 × 𝑟0 + 𝑡 × 𝑟1 (6)

The idea is to use the Euclidean algorithm, but we express the current remainder 𝒓𝒊 in

every iteration as a linear combination of the form:

𝑟𝑖 = 𝑠𝑖 × 𝑟0 + 𝑡𝑖 × 𝑟1 (7)

In the last iteration we obtain:

𝑟𝑛 = 𝑔𝑐𝑑 𝑟0, 𝑟1 = 𝑠𝑛 × 𝑟0 + 𝑡𝑛 × 𝑟1 = 𝑠 × 𝑟0 + 𝑡 × 𝑟1 (8)

This means that the last coefficients 𝒔𝒏 and 𝒕𝒏 are the coefficients 𝒔 and 𝒕 of Eq (6)

Let consider the extended Euclidean algorithm with the same values as in the

previous example, 𝑟0 = 973 and 𝑟1 = 301.

In the following table, in every iteration, on the left-hand side we compute the

Euclidean algorithm and the integer quotient 𝑞𝑖−1 and on the right-hand side we

compute the coefficients 𝑠𝑖 and 𝑡𝑖, verifying Eq (7).

Safwan El Assad

Extended Euclidean algorithm

45Safwan El Assad

Extended Euclidean algorithm

𝒊 𝒓𝒊−𝟐 = 𝒒𝒊−𝟏 × 𝒓𝒊−𝟏 + 𝒓𝒊 0 ≤ 𝒓𝒊 < 𝒓𝒊−𝟏 𝒓𝒊 = 𝒔𝒊 × 𝒓𝟎 + 𝒕𝒊 × 𝒓𝟏

2 𝒓𝟎 = 𝒒𝟏 × 𝒓𝟏 + 𝒓𝟐 0 < 𝒓2 < 𝒓1 𝒓𝟐 = 𝒔𝟐 × 𝒓𝟎 + 𝒕𝟐 × 𝒓𝟏

3 𝒓𝟏 = 𝒒𝟐 × 𝒓𝟐 + 𝒓𝟑 0 < 𝒓3 < 𝒓2 𝒓𝟑 = 𝒔𝟑 × 𝒓𝟎 + 𝒕𝟑 × 𝒓𝟏

4 𝒓𝟐 = 𝒒𝟑 × 𝒓𝟑 + 𝒓𝟒 0 < 𝒓4 < 𝒓3 𝒓𝟒 = 𝒔𝟒 × 𝒓𝟎 + 𝒕𝟒 × 𝒓𝟏

⋮ ⋮ ⋮ ⋮

n 𝒓𝒏−𝟐 = 𝒒𝒏−𝟏 × 𝒓𝒏−𝟏 + 𝒓𝒏 0 < 𝒓𝑛 < 𝒓𝑛−1 𝒓𝒏 = 𝒔𝒏 × 𝒓𝟎 + 𝒕𝒏 × 𝒓𝟏

n+1 𝒓𝒏−𝟏 = 𝒒𝒏 × 𝒓𝒏 + 𝟎

We will now derive recursive formulae for computing 𝒔𝒊 and 𝒕𝒊 in every iteration.

In the iteration 𝒊 we first compute 𝒒𝒊−𝟏 and the new reminder 𝒓𝒊 from 𝒓𝒊−𝟏 and 𝒓𝒊−𝟐.

𝒓𝒊 = 𝒓𝒊−𝟐 − 𝒒𝒊−𝟏 × 𝒓𝒊−𝟏 (9)

In the previous iterations 𝒊 − 𝟐 and 𝒊 − 𝟏 we computed the values:

𝒓𝒊−𝟐 = 𝒔𝒊−𝟐 × 𝒓𝟎 + 𝒕𝒊−𝟐 × 𝒓𝟏

𝒓𝒊−𝟏 = 𝒔𝒊−𝟏 × 𝒓𝟎 + 𝒕𝒊−𝟏 × 𝒓𝟏

In order to compute 𝒓𝒊 as a linear combination of 𝒓𝟎 and 𝒓𝟏, we substitute the previous

values 𝒓𝒊−𝟐 and 𝒓𝒊−𝟏 in Eq (9), we obtain:

𝒓𝒊 = 𝒔𝒊−𝟐 × 𝒓𝟎 + 𝒕𝒊−𝟐 × 𝒓𝟏 − 𝒒𝒊−𝟏 × 𝒔𝒊−𝟏 × 𝒓𝟎 + 𝒕𝒊−𝟏 × 𝒓𝟏

𝒓𝒊 = 𝒔𝒊−𝟐 − 𝒒𝒊−𝟏 × 𝒔𝒊−𝟏 × 𝒓𝟎 + 𝒕𝒊−𝟐 − 𝒒𝒊−𝟏 × 𝒕𝒊−𝟏 × 𝒓𝟏 = 𝒔𝒊 × 𝒓𝟎 + 𝒕𝒊 × 𝒓𝟏

46Safwan El Assad

Extended Euclidean algorithm

From the later equation we deduce the recursive equations:

𝒔𝒊 = 𝒔𝒊−𝟐 − 𝒒𝒊−𝟏 × 𝒔𝒊−𝟏 (10)

𝒕𝒊 = 𝒕𝒊−𝟐 − 𝒒𝒊−𝟏 × 𝒕𝒊−𝟏 (11)

These equations are valid for 𝒊 ≥ 𝟐 and the initial values are:

𝒔𝟎 = 𝟏, 𝒔𝟏 = 𝟎, 𝒕𝟎 = 𝟎, 𝒕𝟏 = 𝟏.

Safwan El Assad 47

AES Decryption

Safwan El Assad 48

Chaos-based Cryptography

What is chaos?

49

 Chaos is the art of forming complex from simple

 Chaos can be generated by a non-linear dynamical system

 Edward Lorenz a meteorologist trying to predict the weather

 Butterfly Effect (1960): If a butterfly flaps its wings in Paris,

it could change the weather in New York.

 Lorenz map (1963): 3-D chaotic map

Safwan El Assad

Dynamical non-linear systems can generate chaos

 Discrete-time dynamical system:

Recursion relations, iterated maps or simply maps

 Continuous-time dynamical system:

Flow: continuous evolution of field lines in the phase space

 () (1) X n F X n

 () ()X t F X t

Attractor: Signature & Beauty of dynamical chaos

50Safwan El Assad

Application: S. Smale horseshoe map

Horseshoe map is a class of chaotic

maps, it is defined geometrically by:

- squishing the square,

- stretching the result into a long strip,

- folding the strip into the shape of a

horseshoe

Chaotic dynamical System

 A chaotic dynamical system is:

 Deterministic, not random and unpredictable

Means that the system has no random or noisy inputs. The irregular behaviour

arises from the system’s nonlinearity.

 Aperiodic long term behaviour for continuous-time dynamical system

Means that there should be trajectories which do not settle down to fixed points,

periodic orbits or quasi-periodic orbits as t →∞.

 Periodic behaviour for discrete-time dynamical system

 Sensitive to initial conditions and initial parameters (Secret Key)

Means that nearby trajectories separate exponentially fast, which means the

system has positive Lyapunov exponent.

51Safwan El Assad

Chaotic dynamical System

Low-dimensional chaotic dynamical system 𝑿 𝒏 = 𝑭[𝑿 𝒏 − 𝟏] is capable of

complex and unpredictable behavior

The set of points: 𝑿 𝟎 , 𝑿 𝟏 = 𝑭 𝑿 𝟎 ,⋯ , 𝑿 𝒌 = 𝑭[𝑿 𝒌 − 𝟏]

is called a trajectory (or orbit)

(0)X

1(0)X

(1)X

1(1)X

()X i

1()X i

()X k

1()X k

() (0)    kX k X e

()X k

1(0) (0) (0)  X X X

Lyapunov exponent  measure the divergence rate between orbits

52Safwan El Assad

Chaotic dynamical System

 Imperfect knowledge of present, so (practically) no prediction of future

 Dense

Infinite number of trajectories in finite region of phase space

 Attractor: set of orbits to which the system approaches from any initial

state (within the attractor basin)

53Safwan El Assad

Lorenz Attractor

Why using chaos to secure information?

Useful properties of chaos in secure information

 Easy to generate: simple discrete-time dynamical system is

capable to generate a complex and random like behavior

sequences :

 Chaotic signal is deterministic, not random (we can

regenerate it) and it has a broadband spectrum

 Chaotic signal is extremely difficult to predict because of

the high sensitivity to the secret key

 Very big number of orbits in finite region of phase space

Safwan El Assad
54

 () (1) X n F X n

Examples of systems exhibiting chaos

 Biological Systems

 Prey-predator models: Logistic map

Models describing the interaction between predators and their prey to investigate
species population year on year.

 Human physiology

- Brain: normal brain activity is thought to be chaotic.

- Heart: normal heart activity is more or less periodic but has variability thought to be
chaotic. Fibrillation (loss of stability of the heart muscle) is thought to be chaotic

 Laser instabilities

 Weather systems

Models of the weather including convection, viscous effects and temperature can
produce chaotic results. First shown by Edward Lorenz in 1963.

Long term prediction is impossible since the initial state is not known exactly.

 Turbulence

Experiments and modeling show that turbulence in fluid systems is a chaotic

phenomenon

55Safwan El Assad

Some known chaotic maps used in

chaos-based cryptography

 Chaotic maps used as PRNG:

1-D: Logistic, PWLCM, Skew Tent

3-D: Lorenz, Chebyshev

4-D: Chebyshev polynomial, Lorenz Hyperchaos, Chen

Hyperchaos, Qi Hyperchaos.

 Chaotic maps used as permutation layer :

2-D : Cat, Standard, and Baker map

 Chaotic map used as nonlinear substitution layer :

1-D : Skew Tent

 Effects of the finite precision N

Safwan El Assad
56

Presentation of some 1-D chaotic generators

57Safwan El Assad

 Logistic Map:

Logistic map is a prey-predator model for predicting the population of a

species year on year. Also used in many secure communication systems

Population from generation n-1 to generation n is given by:

𝒙 𝒏 = 𝒇 𝒙 𝒏 − 𝟏 = 𝒓 × 𝒙 𝒏 − 𝟏 × 𝟏 − 𝒙 𝒏 − 𝟏 𝒘𝒊𝒕𝒉
𝟎 < 𝒓 ≤ 𝟒

𝟎 < 𝒙 𝒏 − 𝟏 < 𝟏

Fixed points: 𝒙 𝒏 = 𝒇 𝒙 𝒏 − 𝟏 = 𝒙 𝒏 − 𝟏 = 𝟏 −
𝟏

𝒓

 Discrete Logistic map: quantized on N-bit (N = 32 bits)

𝑿 𝒏 =

𝑿(𝒏 − 𝟏) 𝟐𝑵 − 𝑿(𝒏 − 𝟏)

𝟐𝑵−𝟐
𝒊𝒇 𝑿 𝒏 − 𝟏 ≠ 𝟑 × 𝟐𝑵−𝟐 − 𝟏, 𝟐𝑵−𝟏

𝟑 × 𝟐𝑵−𝟐 − 𝟏 𝒊𝒇 𝑿 𝒏 − 𝟏 = 𝟑 × 𝟐𝑵−𝟐

𝟐𝑵 − 𝟏 𝒊𝒇 𝑿 𝒏 − 𝟏 = 𝟐𝑵−𝟏

With: 𝒓 = 𝟒 𝒂𝒏𝒅 𝟎 < 𝑿 𝒏 − 𝟏 < 𝟐𝑵, 𝒁 means floor (Z), biggest integer no bigger than Z

𝒓: control or growth parameter; 𝒙 𝒏 , 𝑿 𝒏 : 𝒅𝒚𝒏𝒂𝒎𝒊𝒄𝒂𝒍 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔

Logistic map

58

Three fixed points:

𝒙 𝒏 = 𝒇 𝒙 𝒏 − 𝟏 = 𝒙 𝒏 − 𝟏 = 𝟏 −
𝟏

𝒓

𝒙𝒇 𝒏 =
𝟏 −

𝟏

𝒓
= 𝟏 −

𝟏

𝟐. 𝟓
= 𝟎. 𝟔

𝟎 𝒂𝒏𝒅 𝟏

Safwan El Assad

Fixed points region

()x n

r

2.5r 

()x n

n

Logistic map

59

3.3r 

Period-2

If initial condition is changed, the

sequence always converge to the

same cycle of period-2, but with a

different rate

Feigenbaum Bifurcation

Bifurcations mark the transition from order into chaos

Safwan El Assad

Logistic map

60

3.5r 

Period-43.544090 – period of 8

3.564407 – period of 16

3.568759 – period of 32

3.569692 – period of 64

3.569946 – period doubling ends

𝒓 ≥ 𝒓𝒄 = 𝟑. 𝟓𝟔𝟗𝟗𝟔 → Chaos emerges

The attractor branches into two,

then four, then eight and so on

Safwan El Assad

Logistic map

61

Chaos does not necessarily imply disorder

Chaos is the “randomness” in predicting the next iteration

The sequence follows a

geometric progression, but soon

looks like a mess.

Messy regions are cyclically

interspersed with clear

“windows”.

Existence of period-3 windows

implies chaos

Safwan El Assad

~ 3.569946 – period doubling region ends and chaos begins

3.828427 – small period tripling window opens up

~ 3.855 – period tripling cascade ends and chaos resumes

~ 4.0 chaos reigns

Safwan El Assad
62

Bifurcation Diagram Lyapunov Exponent

Strange Attractor: cobweb trajectory Discrete Variation

Logistic Map

Safwan El Assad 63

Attractor
Mapping

 Discrete Skew Tent Map

𝑿 𝒏 = 𝑭 𝑿 𝒏 − 𝟏 , 𝑷 =

𝟐𝑵 ×
𝑿 𝒏 − 𝟏

𝑷
𝒊𝒇 𝟎 < 𝑿 𝒏 − 𝟏 < 𝑷

𝟐𝑵 ×
𝟐𝑵 − 𝑿 𝒏 − 𝟏

𝟐𝑵 − 𝑷
𝒊𝒇 𝑷 < 𝑿 𝒏 − 𝟏 < 𝟐𝑵

𝟐𝑵 − 𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
𝟏 ≤ 𝑿 𝒏 − 𝟏 ≤ 𝟐𝑵 − 𝟏, 𝟏 ≤ 𝑷 ≤ 𝟐𝑵 − 𝟏: Control parameter, 𝑵 = 32 bits

Better cryptographic performances than the Logistic map

Histogram is more uniform. Antagonist characteristics with the PWLCM

Safwan El Assad 64
AttractorMapping

 Discrete PWLCM Map

𝑿 𝒏 =

𝟐𝑵 ×
𝑿 𝒏 − 𝟏

𝑷
𝒊𝒇 𝟎 < 𝑿 𝒏 − 𝟏 < 𝑷

𝟐𝑵 ×
𝑿 𝒏 − 𝟏 − 𝑷

𝟐𝑵−𝟏 − 𝑷
𝒊𝒇 𝑷 < 𝑿 𝒏 − 𝟏 < 𝟐𝑵−𝟏

𝟐𝑵 ×
𝟐𝑵 − 𝑷 − 𝑿 𝒏 − 𝟏

𝟐𝑵−𝟏 − 𝑷
𝒊𝒇 𝟐𝑵−𝟏 < 𝑿 𝒏 − 𝟏 < 𝟐𝑵 − 𝑷

𝟐𝑵 ×
𝟐𝑵 − 𝑿 𝒏 − 𝟏

𝑷
𝒊𝒇 𝟐𝑵 − 𝑷 < 𝑿 𝒏 − 𝟏 < 𝟐𝑵

𝟐𝑵 − 𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
𝟏 ≤ 𝑿 𝒏 − 𝟏 ≤ 𝟐𝑵 − 𝟏, 𝟏 ≤ 𝑷 ≤ 𝟐𝑵−𝟏 − 𝟏: Control parameter, 𝑵 = 32 bits

 Discrete 3-D Chebyshev map

𝑿 𝒏 =

𝟐𝑵−𝟏 𝒊𝒇 𝑿 𝒏 = 𝟎 𝒐𝒓 𝟐𝑵 𝒐𝒓 𝟐𝑵−𝟏

𝟐−𝟐𝑵+𝟐 ×
𝟒 × 𝑿(𝒏 − 𝟏) − 𝟐𝑵−𝟏

𝟑

−𝟑 × 𝟐𝟐𝑵−𝟐 × 𝑿(𝒏 − 𝟏) − 𝟐𝑵−𝟏
+ 𝟐𝑵−𝟏, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝟏 ≤ 𝑿 𝒏 − 𝟏 ≤ 𝟐𝑵 − 𝟏, 𝑵 = 32 bits

Safwan El Assad 65

MappingDiscrete Variation Attractor

 Linear Feedback Shift Register (LSFR)

Primitive polynomial

𝑸 𝒏 = 𝒙𝟑𝟐 + 𝒙𝟐𝟐 + 𝒙𝟐 + 𝒙 + 𝟏, 𝟏 ≤ 𝑸 𝒏 ≤ 𝟐𝑵 − 𝟏, 𝒍 = 𝟐𝟑𝟐 − 𝟏

Galois structure

Safwan El Assad

66
MappingDiscrete Variation Attractor

Safwan El Assad 67

3-D Chebyshev map

𝑿(𝒏 − 𝟏) 𝑭[𝑿 𝒏 − 𝟏]

LFSR



𝑸(𝒏)

𝑿(𝒏)

 Discrete 3-D Chebyshev map coupled with an LFSR

 Random mapping vs known mapping of a Skew Tent, PWLCM, Logistic, and a 3-D

Chebyshev map

 The technique of coupling a chaotic card with an LFSR improves the cryptographic

properties of this chaotic map.

Safwan El Assad 68

Logistic map 3-D Chebyshev

map with LFSR

𝝌𝒆𝒙
𝟐 38,698 KO 999.48 OK

𝝌𝒕𝒉
𝟐 1073.64 1073.64

• Visually uniform histogram

𝝌𝒆𝒙
𝟐 =

𝒊=𝟎

𝑵𝒄−𝟏
𝑶𝒊 − 𝑬𝒊

𝟐

𝑬𝒊
• Chi-squared distribution ⟺ 𝝌𝒆𝒙

𝟐 < 𝝌𝒕𝒉
𝟐 (𝑵𝒄 − 𝟏, 𝜶)

 Statistical analysis of chaotic maps: Uniformity and NIST test

1) Uniformity test: Histogram and chi-square 𝝌𝟐 test

Uniformity test for the Logistic map and the 3-D Chebyshev map with LFSR

Nc is the number of classes (sub-intervals) or degrees of freedom, chosen here Nc = 1000

Oi is the number of observed calculated samples in the i-th class

Ei is the expected number of samples in a uniform distribution, 𝐸𝑖 = 𝑁𝑠 𝑁𝑐

𝑁𝑠 is the number of generated samples of 32 bits each, chosen here 𝑁𝑠 = 3,125,000 = 108 𝑏𝑖𝑡𝑠

𝜶 is the significance level or probability level, chosen here 𝜶 = 0.05

Safwan El Assad 69

2) NIST test

For all experiments, we generate 100 different sequences of 3,125,100 32-bit samples using 100

random secret keys. But we only used 3,125,000 samples per sequence (i.e. 108 bits). The first

100 samples generated are produced by the system internally but are not used (to deviate from

transitional regime).

Nist test consists of a battery of 188 tests and sub-tests, globally 15 different tests, to conclude

regarding the randomness or non-randomness of binary sequences.

Nist test uses as input a sequence 𝑆 of 𝑛 = 106 bits, then divides them to 𝑚 binary sequences 𝑆𝑘,

𝑘 = 1,𝑚 (chosen here 𝑚=100).

For each test, a set of 𝑚 𝑃_𝑣𝑎𝑙𝑢𝑒𝑠 is produced (based on the standard normal or chi-square as

references distributions).

Frequency

(test 1)

Block Frequency

(test 2)

…….. Linear Complexity

(test 15)

𝑺𝟏 𝑷𝟏, 𝟏
𝑷𝟏, 𝟐

…….. 𝑷𝟏, 𝟏𝟓

𝑺𝟐 𝑷𝟐, 𝟏
𝑷𝟐, 𝟐

…….. 𝑷𝟐, 𝟏𝟓

…….. …….. …….. …….. ……..

𝑺𝒎 𝑷𝒎, 𝟏
𝑷𝒎, 𝟐

…….. 𝑷𝒎, 𝟏𝟓

Safwan El Assad 70

A sequence passes a test (the sequence appears to be random) whenever the 𝑃_𝑣𝑎𝑙𝑢𝑒𝑠 ≥ 𝛼,

where a is the level of significance of the test. The value of 𝛼 is set for all the tests.

For a fixed 𝛼, a certain percentage of 𝑚 𝑃_𝑣𝑎𝑙𝑢𝑒𝑠 are expected to indicate failure. Indeed, an

𝛼 = 0.01, indicates that 1 % of the m sequences are expected to fail.

• A 𝑃_𝑣𝑎𝑙𝑢𝑒 ≥ 𝛼 = 0.01, would mean that the sequence would be random with a confidence of

(1 – 𝛼) = 99 %.
• A 𝑃_𝑣𝑎𝑙𝑢𝑒 < 𝛼 = 0.01, would mean that the conclusion was that the sequence is non-

random with a confidence of (1 – 𝛼) = 99 %.

Remark:

• The minimum pass rate for each statistical test, with the exception of the 8 Random Excursion

tests and the 18 Random Excursion Variant tests, is approximately = 0.960150.

• The minimum pass rate for the 8 Random Excursion tests and the 18 Random Excursion

Variant tests is approximately 0.952091. These tests are applicable only to 62 sequences

instead of 100 sequences.

Safwan El Assad 71

Interpretation of empirical results:

 The distribution of 𝑃_𝑣𝑎𝑙𝑢𝑒𝑠 to check for uniformity

 The examination of the Proportion of sequences that pass a statistical test

 Final Analysis Report

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 <----- P-values
--

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUET PROPORTION STATISTICAL TEST

--

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 <----- Frequency of P-values

13 8 12 6 10 10 10 10 10 11 0.946308 0.9600 frequency

4 6 13 12 12 15 11 12 4 11 0.137282 0.9800 block-frequency

15 10 8 8 9 13 8 9 8 12 0.779188 0.9800 cumulative-sums

9 10 6 11 9 15 8 6 9 17 0.249284 0.9900 runs

12 9 10 14 5 4 15 8 9 14 0.171867 0.9900 longest-run

14 11 6 12 8 6 13 3 21 6 0.002758 1.0000 rank

12 13 10 13 13 6 10 7 7 9 0.678686 0.9900 fft

9 7 8 11 13 9 9 14 12 8 0.834308 0.9900 nonperiodic-templates (148)

12 11 11 17 11 9 9 7 7 6 0.419021 0.9900 overlapping-templates

4 17 10 12 9 10 4 12 13 9 0.122325 1.0000 universal

8 10 10 10 10 12 9 14 8 9 0.964295 0.9900 approximate entropy

3 2 11 6 7 8 8 4 8 5 0.253551 0.9677 random-excursions (8)

6 2 7 8 6 11 6 8 5 3 0.350485 0.9677 random-excursions-variant (18)

8 10 10 6 10 12 10 14 9 11 0.897763 0.9900 serial

19 9 8 7 7 13 6 9 7 15 0.058984 0.9900 linear-complexity

Safwan El Assad 72

NIST test for the Logistic map and the 3-D Chebyshev map with LFSR

Logistic 3-D Chebyshev

NIST test P-value Prop % P-value Prop %

Frequency 0.000 92.000 0.249 100

Block-frequency 0.000 0.000 0.011 98

Cumulative-sums (2) 0.000 93.500 0.608 100

Runs 0.000 0.000 0.335 99

Longest-run 0.000 0.000 0.494 100

Rank 0.419 98.000 0.983 99

FFT 0.000 41.000 0.115 100

Non-periodic-templates (148) 0.036 61.304 0.524 99.020

Overlapping-templates 0.000 0.000 0.304 100

Universal 0.000 0.000 0.798 98

Approximate Entropy 0.000 0.000 0.213 100

Random-excursions (8) 0.002 90.367 0.284 99.256

Random-excursions-variant

(18)

0.400 99.145 0.290 99.592

Serial (2) 0.000 0.500 0.259 99

Linear-complexity 0.081 97.000 0.514 100

Logistic

3-D Chebyshev

Safwan El Assad 73

 NIST test and uniformity test for studied chaotic maps

 Logistic

𝜒𝑒𝑥𝑝
2 = 38,698.41

> 𝜒𝑡ℎ
2 (1073.64)

✗

 SkewTent

𝜒𝑒𝑥𝑝
2 = 1,113.45

> 𝜒𝑡ℎ
2

✗

 PWLCM

𝜒𝑒𝑥𝑝
2 = 1,146.92

> 𝜒𝑡ℎ
2

✗

 3-D

Chebyshev

𝜒𝑒𝑥𝑝
2 = 41,865.00

> 𝜒𝑡ℎ
2

✗

 LFSR

𝜒𝑒𝑥𝑝
2 = 989.48

< 𝜒𝑡ℎ
2

✓

 3-D Chebyshev

with LFSR

𝜒𝑒𝑥𝑝
2 = 999.48 < 𝜒𝑡ℎ

2

✓
✓

Safwan El Assad 74

 Computing performance

o Computing by software: C language

Computer: Intel ® Core™ i5-4300M, CPU @ 2.6 GHz and memory 15.6 GB

Operating system: Ubuntu 14.04 Linux, using GNU GCC compiler

𝑩𝒊𝒕 𝒓𝒂𝒕𝒆(𝑴𝒃𝒊𝒕/𝒔) =
𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅 𝒅𝒂𝒕𝒂 𝒔𝒊𝒛𝒆 (𝑴𝒃𝒊𝒕𝒔)

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆 (𝒔𝒆𝒄𝒐𝒏𝒅)

𝑵𝑪𝒑𝑩 =
𝑪𝑷𝑼 𝒔𝒑𝒆𝒆𝒅 (𝑯𝒛)

𝑩𝒊𝒕 𝒓𝒂𝒕𝒆(𝑩𝒚𝒕𝒆 𝒔)

𝑵𝑪𝒑𝑩: permits to compare the computing performance of different systems working
on different platforms

: Number of needed Cycles to generate one Byte

or Throughput (Mbps)

Logistic SkewTent PWLCM

Generation time (𝜇𝑠) 317 422 514

Bit rate (Mbps) 3144 2368 1941

NCpB 3 8 10

Safwan El Assad 75

o Computing by hardware: VHDL description & FPGA

All studied chaotic systems were coded in VHDL using the Xilinx Vivado design suite (V.2017.2)

and were implemented on a Xilinx XC7Z020 PYNQ-Z2 (7z020clg400-1) FPGA hardware platform.

The programmable logic of the ZYNQ XC7Z020 provides 13,300 logic slices, each with four 6-input

LUTs and 8 flip-flops, 630 KB block RAM, 220 DSP slices, and on-chip Xilinx analog-to-digital converter

(XADC). It also has an external 125 MHz reference clock (PL CLK): 𝑃𝐿 − 𝐹 = 125 𝑀𝐻𝑧, 𝑃𝐿 − 𝑇 = 8 𝑛𝑠.

Safwan El Assad
76

Maximum Frequency (MHz)

𝑴𝒂𝒙_𝑭𝒓𝒆𝒒 =
𝟏

𝑻𝒊 −𝑾𝑵𝑺𝒊
𝑴𝑯𝒛

Throughput (Mbps)

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 = 𝑵 ×𝑴𝒂𝒙_𝑭𝒓𝒆𝒒 (𝑴𝒃𝒑𝒔)

Efficiency (Mbps/Slices)

𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =
𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕

𝑺𝒍𝒊𝒄𝒆𝒔
𝑴𝒃𝒑𝒔/𝑺𝒍𝒊𝒄𝒆𝒔

o Hardware metrics

𝑇𝑖 is the target clock period (𝑛𝑠) used during the implementation run ”𝑖” and 𝑊𝑁𝑆𝑖 is

the Worst Negative Slack (𝑛𝑠) of the target clock used during the implementation run

”𝑖” and must be positive, very close to zero.

WNSi is the difference between the target clock period and the path delay between a

pair of registers. The longest path delay 𝜏𝑖 = 𝑇𝑖 −𝑊𝑁𝑆𝑖 determines the maximum

frequency at which the design can operate.

Safwan El Assad 77

Chaotic maps

Logistic SkewTent PWLCM 3-D
Chebyshev

LFSR 3-D Ch
with LFSR

Resources
used

Area

LUTs 77 /0.14 % 2,830
/5.32 %

7,374
/13.86 %

268 /0.05 % 2 / 0.01 % 315 /0.59 %

FFs 49 /0.05 % 57 /0.05 % 63
/0.06 %

47 /0.04 % 62 /0.06 % 78 /0.07 %

Slices 33 /0.25 % 853 /6.41 % 2,171
/16.32 %

73 /0.55 % 19 /0.14 % 98 /0.74 %

DSPs 4 /1.82 % 0 /0.00 % 0 /0.00 % 12 /5.45 % 0 /0.00 % 12 /5.45 %

Speed

WNSi (ns) 0.102 0.059 0.287 0.581 5.965 0.278

Ti (ns) 12 28 32 24 8 22.80

Max_Freq (MHz) 84.04 35.78 31.53 42.70 491.40 44.41

Throughput (Mbps) 2,689.52 1,145.27 1,009.04 1,366.41 15,724.81 1,421.40

Efficiency (Mbps/Slices) 81.500 1.342 0.464 18.717 827.621 14.504

Power Consumption (W) 0.083 0.070 0.102 0.048 0.118 0.052

o Hardware metrics

Effects of the finite precision N

78
Safwan El Assad

 In finite precision N bits with 1-D chaotic map

𝑿 𝒏 = 𝑭 𝑿 𝒏 − 𝟏 , 𝑿 𝒏 ∈ 𝟏, 𝟐𝑵 − 𝟏 , 𝒏 = 𝟏, 𝟐,⋯ 𝑵𝒐𝒕𝒂𝒕𝒊𝒐𝒏:𝑿𝒏 = 𝑿 𝒏

1X

1 l cX

1lX

lX1lX0X

Transient branch of length l

Cycle of period cLength of the orbit : o = l+ c

Pseudo-orbit of an integer chaotic values

Maximum length of the orbit : 𝒐𝒎𝒂𝒙 = 𝟐𝑵 − 𝟏, extremely rare to obtain

Analytical rule of the Average length of the orbit is: ∆𝒏𝒐𝒎≅ 𝟐𝑵
 𝟏 𝟐 𝒅

= 𝟐
𝑵

𝟐
×𝒅

Were d is the number of delays of the recursive structure, if exist

Effects of the finite precision N

79Safwan El Assad

Example : N = 4 bits, and two I.Cs

 Situation b : 2 different I.Cs give the same cycle c

 Situation a : 2 different I.Cs give 2 different cycles

1° I.C : l = 3, c = 5

2° I.C : l = 3, c = 2

15

813 10

Fixed point
12 0

 Situation c

2° I.C : l = 2, c = 5

5

4
11

14

7 913 6

1° I.C : l = 3, c = 5

5

4
11

14

7 913 6

2

l = 1, c = 1

Safwan El Assad 80

 Observation: for classic 1-D chaotic maps used alone

 Advantages:

• Simple equation

• Easy implementation

• Good computing performance

 Disadvantages:

• Weakness on security

• Short size of the secret key

• Short periodic orbits

• Easily recognized functions

