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ABSTRACT 

The purpose of this paper is to introduce a new 
vector quantizer (VQ) for the compression of di- 
gital image sequences. Our approach unifies both 
efficient coding methods : a fast lattice encoding 
and an unbalanced tree-structured codebook design 
according to a distortion vs. rate tradeoff. This 
tree-structured lattices VQ (TSLVQ) is based on 
the hierarchical packing of embedded truncated lat- 
tices. So we investigate the design of the hierarchi- 
cal set of truncated lattice structures which can be 
optimaly embedded. We present the simple quan- 
tization procedure and describe the corresponding 
tree-structured codebook. Finally two unbalanced 
tree-structured codebook design algorithms based 
on the BFOS [l] distortion vs. rate criterion are 
used. 

1. INTRODUCTION 

Consider that we code a stationary memoryless vec- 
torial source. According to  the asymptotic equipar- 
tition property, as the space dimension increases, 
the vector probability function becomes essentially 
localized to a compact region of the vector space 
where the density is almost uniform [lo]. The opti- 
mal condition for vector quantization occurs when 
all the codevectors are confined to a compact sup- 
port region. So for a given bit rate, the average 
reconstruction error for the input vectors is decreas- 
ing. Because of the uniform density, a codebook de- 
signed by truncating the highly regular structure of 
a lattice is well fitted to  vector quantization schemes 
without learning stage [4]. 
However, in practice, the design of VQ coder using 
high-density lattices [2] for large dimensions of the 
vector space produces codevectors with small repre- 

sentativeness and needs efficient entropy-based in- 
dexing module. To overcome these drawbacks, we 
propose a new lattice VQ scheme based on the hie- 
rarchical packing of embedded lattices. This ap- 
proach has simultaneously the efficient properties of 
a lattice VQ ( i.e no time-consuming learning stage 
for the codebook design and fast coding-decoding 
operators for each new input source vector) and the 
opportunity to locally adapt the packing and the 
hierarchy of lattices taking into account the statis- 
tical partition of the image source vectors. This vec- 
tor source, even if we preprocessed it (by a wavelet 
transform for instance) is always a nonstationary 
signal. So a temporal updating of the codebook [6][8] 
has to be designed in order to fit the input spa- 
tiotemporal source distribution. The generalized 
Lloyd algorithm [5] provides the locally optimal CO- 
debook for a given training set and a given bit rate, 
but the computation complexity of usual classifica- 
tion methods presents a limitation on their applica- 
bility for adaptive schemes. A pre-defined hierarchy 
of embedded lattices seems to be the adequate and 
adaptive representation for a lot of commonly used 
image source vector spaces (i.e DCT coefficients, 
wavelet coefficients, vector of motion-compensated 
prediction errors or an hybrid source between all of 
these.., etc). 

2. TSLVQ DESIGN 

2.1. Embedded Truncated Lattices 

With respect to the space dimension, the optimal 
lattice is selected among Z 2 ,  Dq, EB, h16. These lat- 
tices give the best sphere packings and coverings 
in their dimension. Then, considering the L2 Eu- 
clidean metric, the regular structure is specifically 
truncated for the packing such as the confined space, 
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after contraction, recovers maximaly a Voronoi' cell 
of the support lattice. Thus, if p and r are respec- 
tively the packing radius and the covering radius 
of the support lattice, the lattice truncation energy 
ET is given by [3]: 

ET = ((2 x k + 1) x p)' with IC E IN* 

Namely, the Voronoi' cells totally or partially within 
the multidimensional sphere of radius R = & 
constitute the confined space. In high dimension, an 
upper bound for the number of lattice points that 
lie within this subset is calculated using the Theta 
series and considering the points into the sphere of 
radius 0,  with : 

0 = (2 x k. + 2) x T 

The figure 1 illustrates the method using the simple 
2' lattice, without any loss of generality our ap- 
proach can be generalized to  higher dimensions by 
employing high dimension lattices. 

Figure 1: Truncated Z 2  lattice (k = 1). The squares 
symbolise the Voronoi' cells and the dots symbolize 
the reconstruction points. 

2.2. Hierarchical Set of Truncated Lattices 

So, from the previous basic confined space, by shift- 
ing its scale, we obtain a hierarchical set of multi- 
dimensional regular structures : it is possible, by a 
simple translation, to embed a lower scale truncated 
lattice in any Voronoi' cell of the next higher scale 
structure (see figure 2). 

2.3. Quantization Procedure 

The figure 3 illustrates the quantization procedure 
using successive scaling and translating operators. 

I -1_._1J 

Finer resolution 

Figure 2: Hierarchical set corresponding to  the pre- 
vious truncated Z 2  lattice. 

X : input vectors ; 

0 Y : truncated lattice reproduction vectors ; 

Emax : maximum energy for the source to be 
encoded ; 

FI = JZ : scaling factor used in order to 
project X into the basic confined space ; 

m F =  a : scaling factor used in order to 
(re)project the vectors into the next finer re- 
solution lattice space ; 

Only the parameters Emax and k have to be fixed. 
At each stage, the quantization is performed with 
the same truncated lattice structure. 

Figure 3: Quantization scheme. 

2.4. Tree-Structured Codebook 

So the codebook has a m-ary tree structure, with 
m corresponding to the basic confined space points 
number. A node is a lattice point, its children are 
the points of the lattice structure embedded into 
the node Voronoi' cell. A tree stage specifies the 
scale amplitude : the deeper is the tree, the finner 
is the resolution, the reconstruction errors of the in- 
put vectors decrease while the terminal nodes num- 
ber increases. The figure 4 shows a tree-structured 

We have : codebooks example. 
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2.5. Unbalanced Tree-Structured Codebook 
Design 

Two classical strategies have been explored in or- 
der to obtain a variable rate vector quantizer (i.e 
an unbalanced tree) : a tree pruning and a greedy 
tree growing approach [ 11 [9]. 
In our experiments a training procedure is performed 
to design the codebook. When encoding the given 
source, each tree node is characterized by an av- 
erage distortion and an variable code length. In 
order to select the branch for pruning (tree pruning 
approach) or the leaf for splitting (tree growing ap- 
proach), the BFOS decision criterion is accurate : it 
performs a locally optimal entropy/distortion trade- 
Off .  

An entropy encoding is used for indexing the un- 
balanced tree terminal leaves. An efficient encoding 
and indexing is achieved if the basic confined points 
number is highly restricted, so k is fixed to 1 for the 
lattice truncatioii energy calculation ET. 
The average distortion or the average code length 
associated to the terminal leaves is considered to 
stop the codebook design procedure. 
Now we remark an other aspect in the figure 3 : on 
the contrary to usual multistage VQ, the quantiza- 
tion stages number is variable for the input vectors. 

The overall information that we have to transmit to 
characterized the TSLVQ codebook is constituted 
by ' Emax, the tree and the entropy 

lattice predefined structure, no reproduction vectors 
have to be transmitted. 

Figure 4: Tree-structured codebooks example using 

(b). The white dots symbolize the input vectors. 

index corresponding to the leaves. Because Of the 1 quantization (a), and 2 quantization stages 

3. RESULTS AND CONCLUSION 

Comparative experiments applied to  i.i.d synthetic 
sources and real-world images sequence have been 
performed. A training ratio upper than 100 is used 
for limiting the reproduction vectors number, so the 
training sequence size is adapted to the vector di- 
mension. 
The figures 6 illustrates the tree pruning approach 
with Z2. This figure shows how our method is 
adapted to differential or hybrid image source cod- 
ing : for a given rate, the high-density space region 
(where are located the lowest error magnitudes) is 
coarsely quantized in order to permit a finer coding 
of the low-density space region (where lie relevant 
vectors). 

Figure 5: Image extracted from the daflerentaal im- 
ages sequence source. 
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The tree growing approach is illustrated by the fig- 
ure 7 which shows PSNR (peak signal-to-noise ra- 
tio) vs. rate (the codebook entropy) curves, and 
an image of the differential images sequence vector 
source is given with the figure 5. For comparison, 
the curve obtained using the LBG algorithm [7] is 
shown : the vector dimension is 4 and a full search 
within the codebook is achieved. The interest of us- 
ing higher dimensions is demonstrated since TSLVQ 
with 0 4  or Z4 lattices performs better than the oth- 
ers (a higher PSNR is achieved for a lower rate). 
Given the vector dimension, TSLVQ with the cor- 
responding best quantizing lattice gives the best re- 
sult, therefore TSLVQ with 0 4  lattice performs bet- 
ter than TSLVQ with Z4 lattice. 

Figure 6: Tree pruning approach illustration con- 
sidering respectively a Gaussian distribution (a), a 
Generalized Gaussian distribution (b). 
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Figure 7: Tree growing approach : ,?SNR vs. rate 
curves obtained by coding the differentid source. 
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